• 中文核心期刊
  • 中国科技核心期刊
  • ISSN 1007-6336
  • CN 21-1168/X

近海环境中多氟/全氟烷基化合物赋存研究与展望

王紫檀, 张爽, 王德高, 王震

王紫檀, 张爽, 王德高, 王震. 近海环境中多氟/全氟烷基化合物赋存研究与展望[J]. 海洋环境科学, 2024, 43(4): 489-502. DOI: 10.12111/j.mes.2024-x-0023
引用本文: 王紫檀, 张爽, 王德高, 王震. 近海环境中多氟/全氟烷基化合物赋存研究与展望[J]. 海洋环境科学, 2024, 43(4): 489-502. DOI: 10.12111/j.mes.2024-x-0023
WANG Zitan, ZHANG Shuang, WANG Degao, WANG Zhen. Research prospect and occurrence of per-/polyfluoroalkyl substances in coastal environments[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2024, 43(4): 489-502. DOI: 10.12111/j.mes.2024-x-0023
Citation: WANG Zitan, ZHANG Shuang, WANG Degao, WANG Zhen. Research prospect and occurrence of per-/polyfluoroalkyl substances in coastal environments[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2024, 43(4): 489-502. DOI: 10.12111/j.mes.2024-x-0023

近海环境中多氟/全氟烷基化合物赋存研究与展望

基金项目: 国家自然科学基金项目(42006195,21477028);中德海洋与极地领域合作重大项目
详细信息
    作者简介:

    王紫檀(1998-),女,辽宁丹东人,硕士生,主要研究方向为氟化物的海洋环境行为,E-mail:1828002406@qq.com

    通讯作者:

    王 震(1977-),男,河南郸城人,研究员,博士,主要研究方向为海洋新污染物环境行为和海洋环境监测技术,E-mail:zwang@nmemc.org.cn

  • 中图分类号: X13;X55

Research prospect and occurrence of per-/polyfluoroalkyl substances in coastal environments

  • 摘要:

    多氟/全氟烷基化合物(per-/polyfluoroalkyl substances, PFASs)是一类典型新污染物,在海洋环境中广泛存在,其持久性、长距离迁移性和生物毒性等特性引起了环境管理者的高度关注,对其环境赋存与环境行为的研究是当前环境科学领域热点之一。本文基于文献报道数据对比分析了我国和日本、韩国、欧美等近海海水、沉积物和生物体中PFASs的浓度、组成特征,在国际和国内视野下分析了海洋环境中PFASs的空间分布与组成特征变化概况,探讨了近海PFASs的主要来源,并对近海环境中PFASs有关研究方向进行了展望。数据表明,我国渤海和黄海海水中PFASs浓度与日本和韩国近海相当,东海和南海浓度与欧美近海接近,并显著低于日本和韩国。欧美近海沉积物中PFASs含量与我国渤海相当,高于黄、东、南海。在组成特征上,我国和日本、韩国近海海水中全氟辛酸占比较高,欧美近海海水中则以全氟辛基磺酸为主;我国和日本、韩国近海沉积物中以全氟辛酸为主,欧美以全氟辛基磺酸和短链PFASs为主;我国海洋生物体中以全氟辛酸和全氟辛基磺酸为主,而欧美近海海洋生物体中则以全氟辛基磺酸和其他长链组分为主。

    Abstract:

    Per-/polyfluoroalkyl substances (PFASs) are one of typical emerging pollutants, which exist widely in coastal environments. Because their environmental persistence, long-distance transportation potential and toxicity, environmental occurrence and behaviors of PFASs is one of focus in the fields of environmental science research, and has attracted the attention of environmental managers. Based on the data reported in the literature, the levels and composition profiles of PFASs in seawater, marine sediments and marine organisms in China, Europe, America, Japan and South Korea were compared and discussed. The spatial distribution and characteristics of PFASs in coastal environments were summarized from the international and domestic perspectives, and the primary sources of PFASs into the sea were discussed. The future research priorities of PFASs in coastal environments were prospected. The results showed that the concentrations of PFASs in the Bohai Sea and the Yellow Sea were consistent to those in the seawater of Japan and South Korea. The levels in the East Sea and South China Sea were close to those in Europe and the United States, and were lower than those in Japan and South Korea. The concentrations of PFASs in sediments of Europe and America were similar to those in the Bohai Sea, but higher than those in the Yellow Sea, East Sea and South China Sea. In terms of composition profiles, perfluorooctanoic acid (PFOA) was relatively high in seawater of China, Japan and South Korea, and perfluorooctane sulfonate (PFOS) was main component in seawaters of Europe and America. The components in sediments in China, Japan and South Korea were dominated by PFOA and PFOS, while those in Europe and America were PFOS and short-chain PFASs. PFOA and PFOS were dominant in Chinese marine organisms, while PFOS and other long-chain components were dominant in European and American marine organisms.

  • 多氟/全氟烷基化合物(per-/polyfluoroalkyl substances, PFASs)是一类脂肪烃碳链骨架上部分或全部氢原子被氟原子取代而形成的人工合成含氟有机物,结构通式为CnF2n+1-R,由于其同时具有疏水性和亲水性,被广泛应用于生产生活的各个领域[1-2]。PFASs中的C-F键是最强化学键之一,决定了PFASs具有很高的热稳定性和化学稳定性,被称为“永久化学品”,其在环境中广泛存在,可通过食物链传递和生物富集,对生态系统和人体健康造成长期潜在威胁[3-9]。PFASs的高极性和表面活性使其易随水体传输迁移进入海洋环境,因此海洋是其主要环境受体之一,特别是人类活动密集的近海,是研究PFASs环境赋存、传输迁移、环境指示和生态影响等方面的关键区域。

    当前,PFASs的环境风险已成为广受关注的全球性环境问题之一。2009年,全氟辛基磺酸及其盐类和全氟辛基磺酰氟(统称为PFOS类)被列入《关于持久性有机污染物的斯德哥尔摩公约》,2019年和2022年,全氟辛酸及其盐类和相关化合物(统称为PFOA类)、全氟己基磺酸及其盐类和相关化合物(统称为PFHxS类)也分别被列入公约。2023年我国发布的《重点管控新污染物清单》也将这些物质列入。PFASs不仅对海洋生物的生存和健康构成威胁,同时也会影响海洋生态系统平衡。PFASs可通过食物链进入不同营养级海洋生物体中并富集,干扰海洋生物内分泌系统和生理功能,影响其繁殖和生长[10]。同时,近海环境中PFASs的长期存在,也会带来潜在的海产品食用安全风险[11-12]。PFASs的广泛性和持久性还会对海洋微生物群落的多样性和生态造成负面影响,干扰海洋生态系统的稳定性,这种干扰可能扩大到更高层次的海洋生物[13]

    目前,对海洋环境中PFASs的赋存研究正大量涌现,但主要关注于某一海域或海洋环境介质,缺乏对海洋环境PFASs赋存的整体和系统认识。本研究在梳理近些年国内外不同海域海水、海洋沉积物和海洋生物体中典型PFASs的浓度、组成、分布与主要来源的基础上,分析了在全球近海PFASs的时空分布与组成特征变化,讨论近海PFASs的主要来源,并对今后相关研究的关注点进行展望,以期为PFASs的海洋环境风险评估和科学精准治理提供依据。

    PFASs在我国渤、黄、东、南海近海海水中被普遍检出。Zhao等[14]报道渤海海水中PFASs浓度为6.25~945 ng/L,Lin等[15]分析渤海湾PFASs浓度为30.89~72.89 ng/L。黄、东、南海海水中PFASs浓度分别为1.6~17 ng/L[16]、0.105~0.632 ng/L[17]和0.062~0.494 ng/L[18]。不同文献报道的海水中PFASs浓度差别非常大,从南海的0.062 ng/L至渤海的945 ng/L,表明PFASs在我国近海空间分布差别较大。如Zhao等[14]研究发现,渤海的浓度高值出现在莱州湾,为945 ng/L,比渤海湾、辽河口和渤海中部的浓度高1~2个数量级;Zhou等也观测到莱州湾高值达到556 ng/L,渤海和黄海其他海域浓度为4.55~55.0 ng/L,其原因可能是山东氟生产企业较多,使得邻近氟产业园区的莱州湾PFASs的水平高于其他海域[19]。总体来看,我国4个海区海水中PFASs浓度分布基本呈渤海远高于黄海>东海≈南海(图1)。

    图  1  我国和其他国家海水中PFASs浓度比较[38-46]
    Fig.  1  Comparison of PFASs concentrations in seawater of China and other countries

    从地理类型来看,海水中PFASs浓度分布呈河口/沿海海域高于近海,且受区域内入海河流和产业分布影响显著。山东半岛沿海海水PFASs浓度为23.69~148.48 ng/L[20],胶州湾PFASs为21.8~38.0 ng/L[21],其水平高于黄海沿海(1.6~17 ng/L)[16]。Zhao等[14]研究渤海和入海河流中典型PFASs浓度与组成发现,渤海海域特别是莱州湾PFASs主要来源于入海河流,其中小清河39种PFASs的入海通量为12.076 t/a,占所研究环渤海35条河流入海通量的58%。Zhou等[19]计算渤海和黄海的典型PFASs入海通量为72.2 t/a,其中小清河(33.8 t/a)和长江(34.7 t/a)就占所研究河流入海通量的94.8%。刘宝林等[22]发现,深圳沿海海水中PFASs浓度呈西高东低分布且随离岸距离增加而降低,其分布受河流入海的影响明显。Du等[23]估算我国91条入海河流中PFASs的入海通量为131 t/a,其中长江为73.5 t/a,占一半以上。Kwok等[24]报道华南沿海地区PFASs污染水平与国内生产总值、人口密度之间存在显著的相关性,并受海流的强烈影响。

    莱州湾是我国PFASs浓度较高的典型海域,其浓度变化趋势可以在一定程度上代表我国近海PFASs的变化情况。2012年和2013年莱州湾海水PFASs浓度分别为118 ng/L和94.4 ng/L,而2016年和2017年的浓度升至556 ng/L[19]和945 ng/L[14],增长了5~10倍。在厦门海域,2010年PFASs浓度为1.987 ng/L[25],在同一点位2017年浓度则为13.58 ng/L[26],增长约7倍。以上结果虽是个别点位的研究数据,但在一定程度上也表明了我国近海,特别是热点海域,海水中PFASs浓度处于增长状态。

    发达国家对海水中的PFASs开展了广泛研究。Beškoski等报道日本大阪湾和西部沿海海水中PFASs浓度为nd~53.4 ng/L[27],日本东京湾PFASs浓度为16.7~42.3 ng/L[28]。韩国近海海水中PFASs浓度平均值为几个ng/L,具体而言,Lee等报道韩国全国近海海水中PFASs含量为0.39~22.9 ng/L(平均值为4.46 ng/L)[29],釜山湾、蔚山湾、光阳湾浓度为nd~27.8 ng/L(平均值为3.9 ng/L)[30]。在德国,北海海水中PFASs浓度为0.13~10 ng/L[31],北海和波罗的海检测到PFASs浓度分别为4.7~7.4 ng/L和1.6~5.2 ng/L[32]。Zhao等观测到北大西洋靠近欧洲近海海水中PFASs浓度为0.12~0.38 ng/L,大西洋中部浓度为0.008~0.14 ng/L,大西洋南部浓度为nd~0.045 ng/L[33]。Cai等报道西北太平洋PFASs浓度平均值为0.56 ng/L[34]。美国近海PFASs浓度分布不均衡,部分海湾PFASs浓度较高,在开阔海域PFASs浓度则迅速降低。美国普吉特湾海水中PFASs浓度较高(1.5~41 ng/L)[35],佛罗里达州埃斯坎比亚湾PFASs浓度为3.74~28.63 ng/L,但在邻近海域一个点位的浓度高达677 ng/L(PFOS浓度为269 ng/L),明显受到点源污染[36]。Benskin等报道西北大西洋PFASs浓度较低(0.077~0.19 ng/L),但接近罗德岛附近纳拉甘西特湾的浓度增至5.8 ng/L。东北大西洋加那利群岛海域PFASs浓度为0.28~0.98 ng/L,且随纬度的升高而降低[37]

    总体来看,PFASs在全球海水环境中普遍被检出,我国渤海和黄海PFASs浓度与日本和韩国近海浓度相当,东海和南海与欧洲近海浓度接近,明显低于日本和韩国,美国近海浓度分布不均衡,总体高于欧洲近海、我国东海和南海的PFASs浓度。

    PFASs不同组分的组成特征能够反映区域内氟产业生产消费情况。整体来看,中国和日本、韩国海水中PFOA的组成较高,欧美近海海水中则以PFOS和短链PFASs为主(图2)。

    图  2  我国和其他国家海水中PFOA和PFOS浓度比较[55-60]
    Fig.  2  Comparison of PFOA and PFOS concentrations in seawater of China and other countries

    Zhao等对渤海海水中16种PFASs的研究发现,PFOA浓度为3.2~845 ng/L,占总PFASs浓度的68%,PFOS浓度为nd~2.91 ng/L[14]。Lin等也发现类似规律,渤海湾海水PFOA浓度为26.22~57.74 ng/L,占主导地位,而PFOS浓度为0.29~11.04 ng/L[15]。Hu等报道东海PFASs以PFOA和PFOS为主,其中PFOA浓度为0.015~0.263 ng/L,占总PFASs的48%,PFOS占12% [17]。Xiao等对北部湾的研究显示,PFOA浓度为0.16~1.46 ng/L,占总PFASs的68%,PFOS浓度仅为0.06~0.21 ng/L[47]

    值得注意的是,近年来短链PFASs组分,如全氟丁酸(perfluorobutanoic acid, PFBA,C4)、全氟丁基磺酸(perfluorobutane sulfonate, PFBS,C4)、全氟戊酸(perfluoropentanoic acid, PFPeA,C5)等在我国近海海水中被频繁检出[48]。如大连湾海水中PFOA、PFBA和PFBS是主要组分,浓度平均值(范围)分别为 4.4 ng/L(3.4~5.6 ng/L)、2.4 ng/L(1.1~4.4 ng/L)和 1.5 ng/L(0.4~3.3 ng/L)[49]。Zhao等发现渤海海水中PFPeA浓度(nd~34.4 ng/L)仅次于PFOA,超过PFOS,同时PFBA和PFBS的检出率也较高[14]。Zhou等研究发现,渤、黄海PFPeA(nd~54.3 ng/L)和PFBA(nd~34.5 ng/L)的浓度水平仅次于PFOA,分别占总量的0.6%~68.6% 和5.2%~59.5% [19]。从东海到南海海水中PFBS浓度(0.023~0.941 ng/L)为次高组分,仅低于PFOA [25]。从黄海到南海海水中PFPeA(平均值1.2 ng/L)和PFBS(平均值1.0 ng/L)分别占总量的26%和22%,稍低于PFOA(32%)[50]。北部湾海水中PFPeA为次高组分,浓度为0.07~0.35 ng/L[47],珠江口邻近海域海水中PFBA浓度(nd~0.4016 ng/L)已经高于PFOA(nd~0.4007 ng/L),占主导地位[51]

    部分长链PFASs的替代产品,如6∶2氯代多氟醚磺酸(商品名F-53B,C8)和全氟2-甲基-3-氧杂己酸(HFPO-DA,C6)也在我国近海海水中普遍被检出。渤海检测到HFPO-DA的浓度为nd~6.87 ng/L,并发现其通过河流的入海通量(1310 kg/a)高于PFOS (224 kg/a)[14]。作为PFOS替代产品的F-53B,在渤海湾的检出率为100%,浓度为0.05~11 ng/L(中位值0.28 ng/L)[46],与我国其他海域相比其浓度较高,表明周边存在F-53B的集中生产或使用。Hu等在东海也检测到较高浓度的F-53B(0.60~47 ng/L)[17],Wang等研究南海海水中F-53B,浓度为nd~0.307 ng/L,占总量的11%[51]。以上结果表明,我国近海海水虽以PFOA为主,但短链组分的广泛检出,也反映了我国PFASs的生产使用已有从长链向短链转变的趋势。因此,后续研究中短链组分将是PFASs调查研究中关注的重点目标物。

    韩国近海海水中PFASs的研究结果显示PFOA占主导地位,浓度为0.21~16.5 ng/L,其次是短链的全氟己基磺酸(C6)(<0.1~8.84 ng/L)和PFBS(<0.04~3.87 ng/L)[29],韩国西海岸PFOA和PFOS是主要组分,浓度分别为2.95~68.6 ng/L和4.11~450 ng/L,其次是全氟庚酸(C7),浓度为1.11~47.2 ng/L[52]。与我国类似,日本和韩国海域的短链组分被越来越多检出,如韩国部分海域PFBA和PFPeA占主导,占总量的28%和24%[45],Li等报道日本海PFBA(0.319~0.623 ng/L)的比例高于PFOA(0.065~0.327 ng/L)[39],Beškoski等在大阪湾和纪伊海峡发现全氟己酸(C6)为主要组分(3.4~37 ng/L)[27]。而美国仍以长链为主,如普吉特湾海水中主要组分是PFOA(0.2~8.3 ng/L)、PFOS(0.2~5.8 ng/L)和全氟庚酸(0.25~3.1 ng/L)[35],弗吉尼亚东海岸PFOS占比最大(<0.11~0.91 ng/L),其次是全氟己酸(<0.155~1.0 ng/L)和PFOA(<0.093~0.9 ng/L)[53]。西班牙加泰罗尼亚沿海PFOS(0.05~3.93 ng/L)和PFOA(0.07~1.86 ng/L)的浓度较高[54],在德国波罗的海和波兰沿海海水中PFBA(平均值0.49 ng/L)为主要组分,其次是PFOA(0.32 ng/L)[32],德国北海近海以PFBS(平均值1.2 ng/L)、PFOA(平均值0.84 ng/L)和PFBA(平均值0.92 ng/L)为主,分别占总量的31%、26%和20% [31]。Joerss等在德国北海和波罗的海海水中检测到较高水平的HFPO-DA,浓度为1.6 ng/L,占总量的(27%±5%),其他短链组分如PFBA、PFPeA、PFBS,以及全氟己酸、全氟庚酸约占总PFASs的60%[32]。以上数据表明,2000年以来,3M和杜邦等氟化物的主要生产公司停产传统长链PFASs(PFOA和PFOS等)并向短链组分的生产转变,使得欧美近海海水中短链PFASs占比开始增加。

    我国近海沉积物中普遍检出PFASs(表1)。整体来看,我国各海域表层沉积物中PFASs分布与海水类似,海域间分布差异较大,局部海域含量较高,渤海高于东海和黄海,南海最低。Liu等在渤海湾检测到PFASs含量较高,为2.69~25 ng/g(平均值为6.76 ng/g)[61],沿渤海和黄海的18个城市海洋沉积物中PFASs含量为0.325~11.1 ng/g,且莱州湾沉积物中PFASs含量较高[62],黄海和东海PFASs含量分别为0.209~4.74 ng/g和0.463~2.56 ng/g[63]。Gao等发现渤海沉积物中PFASs含量(平均值为0.77 ng/g)>东海(平均值为0.52 ng/g)>黄海(平均值为0.49 ng/g),且含量随离岸距离增加而降低[64]。南海沉积物中PFASs含量较低,整体水平比渤、黄和东海低近一个数量级,这与南海海水中PFASs含量分布规律一致。如北部湾沉积物中PFASs含量为0.19~0.66 ng/g[47],深圳湾为0.013~0.251 ng/g(平均值为0.073 ng/g)[65],珠江三角洲邻近海域为0.0242~0.1814 ng/g[66],其空间分布受河流影响明显,由河口向近海呈下降趋势。

    表  1  我国和其他国家近海海域沉积物中PFASs含量
    Tab.  1  Comparison of PFASs concentrations in coastal sediment of China and other countries
    海域ΣPFASs含量范围/ng·g−1海域ΣPFASs含量范围/ng·g−1
    渤海湾[57]nd~1.1珠江口邻近海域[51]0.0008~0.084
    渤海莱州湾[58]0.12~2.1珠江口邻近海域[66]0.0242~0.1814
    渤海[64]0.06~2.98北部湾[47]0.19~0.66
    渤海(7月)[60]0.5~2.78北部湾[72]0.056~0.59
    渤海(11月)[60]0.33~1.75东山湾[73]0.15~0.37
    山东半岛沿海[20]1.3~11.17深圳湾[65]0.013~0.251
    大连湾[67]1.49~2.66日本东京湾[28]0.29~0.36
    渤海湾[61]2.69~25韩国半封闭海湾[68]0.006~0.82
    渤海[14]0.7~4.13韩国沿海[29]0.045~1.13
    黄海[64]nd~2.76中国黄海−韩国沿海[62]0.229~53.8
    胶州湾[21]0.459~1.2德国北海[69]0.056~7.4
    东海沿海[64]0.03~1.77德国北海[32]0.018~2.6
    东海沿海[43]0.41~3.06孟加拉湾[74]1.07~8.15
    厦门沿海[59]7.43~12.89美国普吉特湾[70]0.13~1.5
    厦门湾[26]3~5.4白令海[44]0.07~1.7
    东海沿海[17]0.033~0.486楚科奇克海[44]0.09~1.53
    东海到黄海沿海[63]0.209~4.74白令海−北冰洋[44]0.06~1.73
    深圳沿海[22]2.22~2.62北卡罗来纳州沿海[75]nd~7.47
    珠江口[76]nd~2.41美国查尔斯顿市河口[71]0.22~19.2
    下载: 导出CSV 
    | 显示表格

    对海洋沉积物柱状样中PFASs的研究发现,其含量随深度增加而降低,例如,在渤、黄和东海的3个沉积物柱状样中,PFASs含量为nd~1.65 ng/g,3个柱状样中PFASs的分布规律相同,并与我国氟产业的生产消费发展趋势基本一致[64];大连湾两个柱状样中,PFASs含量从上向下分别从2.00 ng/g降到1.20 ng/g和从2.06 ng/g降到 1.37 ng/g,主要组分为PFOA、PFBS和PFBA[67];深圳湾柱状样中PFASs含量为0.013~0.251 ng/g,PFBS为主要组分(nd~0.189 ng/g),约占总量61%,并且PFOA、PFOS和PFBS在不同深度样品中组分比例的变化,与深圳湾区域1955-2020年氟产业的生产使用情况紧密相关[65]

    日本和韩国海洋沉积物中PFASs含量稍低于我国黄海和东海。日本东京湾沉积物中PFASs含量为0.29~0.36 ng/g[28],大阪湾和鹿儿岛湾PFASs平均值为0.336 ng/g和0.211 ng/g[27],韩国近海50个沉积物点位的PFASs含量为0.045~1.13 ng/g[29],西海岸13个城市沉积物中PFASs含量为0.536~0.953 ng/g[62]。Shen等在韩国半封闭海湾发现,PFASs总含量从表层向底部沉积物降低[68]。欧美近海沉积物PFASs含量较高,如德国北海,2015年的数据显示其含量为0.056~7.4 ng/g[69],2019年的结果为0.018~2.6 ng/g [32],虽然含量有降低趋势,但含量水平较日本和韩国仍较高。美国普吉特湾沉积物中PFASs含量为0.13~1.5 ng/g[70],波士顿查尔斯顿河口的含量相对较高(0.22~19.2 ng/g)[71]。Lin等在楚科奇海采集的沉积物柱状样中发现,PFASs含量为0.60~1.92 ng/g(平均值为1.17 ng/g),与该海域表层沉积物PFASs组成类似,PFOS(47%)和 PFBS(19%)是主要组分,1945-2014年,该海域沉积物中PFOS含量从0.56 ng/g逐步升高至2003年的峰值(0.97 ng/g)后开始降低,全氟壬酸(C9)和全氟癸酸(C10)的含量自1975年以来逐步增加,而PFBS和PFOA的含量则呈波动变化,通过对来源解析发现该柱状样中PFASs有45%来自PFOS前驱体的大气氧化过程,该结果也给海洋环境中PFASs的来源提供了不同的观点[44]。总体来看,欧洲和北美近海沉积物中PFASs含量与我国渤海相当,稍高于日本、韩国近海和我国黄海、东海,远高于我国南海。需要指出的是,各国近海沉积物中PFASs含量分布规律与海水中不完全一致,这可能是由于PFASs的性质非常稳定,加之沉积物中PFASs的积累和变化需要更长的时间,其含量的变化要远远慢于水体,使得水体中PFASs的含量分布可以更多体现当下氟产业的影响与变化,而沉积物中PFASs的含量与组成则更多体现了历史趋势。

    沉积物中PFASs各组分的组成特征和含量可以表征PFASs的历史积累情况及变化趋势。从组成上看,我国和日本、韩国近海沉积物中PFASs以PFOA和PFOS为主,其中PFOA占主导,欧美则以PFOS和短链PFASs为主(图3)。

    图  3  我国和其他国家沉积物中PFOA和PFOS含量比较[79-80]
    Fig.  3  Comparison of PFOA and PFOS concentrations in coastal sediment of China and other countries

    Zhao等研究渤海沉积物中PFASs组成发现PFOA(0.2~1.0 ng/g)为主要组分,而PFOS含量仅为nd~0.20 ng/g[14],渤海湾沉积物中也以PFOA和PFOS为主,含量分别为0.436~18.9 ng/g和0.682~5.50 ng/g,分别占总量的39.8%和20.2%[61],胶州湾沉积物中PFOA明显高于其他组分,含量为0.104~0.385 ng/g,占30.1%[21]。东海以PFOA为主(0.11~1.24 ng/g),占PFASs总量的32.2%,而PFOS(<0.15~0.51 ng/g)只占11.4%,是第四多的组分[43]。Wang等研究结果显示,南海沉积物也以PFOS(nd~0.027 ng/g)和PFOA(nd~0.023 ng/g)为主,分别占总量的28.5%和19.9%[26]

    我国近海沉积物中短链PFASs呈增加趋势。在渤海,PFPeA(0.01~0.92 ng/g)含量仅次于PFOA,远超PFOS [14],胶州湾沉积物中PFBA(<0.02~0.292 ng/g)含量超过PFOS(0.036~0.122 ng/g)[21]。在深圳湾同样发现PFBS的占比较高(61%)[65],珠江口邻近海域PFBS(平均值为0.43 ng/g)和全氟己基磺酸(平均值为0.19 ng/g)含量高于PFOA(平均值为0.03 ng/g)和PFOS(平均值为0.12 ng/g)[76]。此外,F-53B和HFPO-DA也被频繁检出,如渤海湾F-53B含量达3.45 ng/g,占总量的13.4%[61],Zhong等在东海和黄海沉积物中100%检出HFPO-DA,且含量较高(0.018~0.45 ng/g),F-53B的检出率为49%,含量为0.002~0.043 ng/g [63],Hu等在东海沉积物样品中也100%检出了F-53B(平均值为0.0053 ng/g)[17]。Wang等在南海近海沉积物中首次检出F-53B,含量为nd~0.0158 ng/g ,占总量的13.7%[26] 。值得注意的是,目前有关海洋沉积物中F-53B检测的报道主要集中在我国,其他国家的报道数据较少[77]

    韩国沉积物中PFASs以长链为主,Lee等研究发现韩国沉积物中PFASs组分以PFOA和PFOS为主,全氟十一酸、PFOA、PFOS和全氟十三酸等4个组分占总量的70%以上[29],韩国马山湾等4个半封闭海湾沉积物中PFOS为主要组分(nd~0.468 ng/g),占总量的48%,其次是全氟十一酸、全氟十二酸和全氟十三酸,合计占23%[68]。日本大阪湾沉积物中以全氟己基磺酸为主(平均值0.130 ng/g),其次是PFOA(平均值0.088 ng/g),鹿儿岛湾PFOA(平均值0.077 ng/g)占主导[27]。在德国北海,2011年Zhao等的数据显示PFOS是主要组分,占总量的24%~72%,PFOA和全氟癸酸各占10%,其余组分均低于8%[69]。2017年Joerss等的研究显示德国北海沉积物中以PFOS为主(0.074~0.39 ng/g),占总量约21%,其次为全氟癸酸,含量为nd~0.54 ng/g,占比约为14%[32]。美国查尔斯顿河口中PFOS(0.07~7.37 ng/g)为主要组分,其次是PFOA(0.02~2.52 ng/g)[71]。西班牙埃布罗河三角洲及周边沿海地区PFOS含量较高,为1.02~22.6 ng/g [78]

    PFASs在不同海洋生物体中均有检出。我国海洋生物体中主要以PFOA和PFOS为主,PFBA和F-53B等短链多有检出,欧美近海生物体中则以PFOS和其他长链如全氟十一酸、全氟十三酸等为主。

    海洋生物中贝类研究较多,不同海区贝类中PFASs含量差别较大,如渤海贝类PFASs总含量为0.0156~64.0 ng/g(湿重)[81],山东沿海PFASs含量为0.061~178.259 ng/g(湿重)[82],东海PFASs平均含量为5.03~381 ng/g(干重)[11],广东南澳岛附近PFASs最高含量达80.89 ng/g(湿重)[83]。我国海洋生物中PFOS和PFOA占主导地位,但不同种类以及不同区域之间PFASs的组成差异较大,这主要是由于其进食习惯和生活环境不同。Guo等研究发现渤海和黄海贝类中主要组分是PFOA,占总PFASs的75.6%,海参中PFOA与碳数<8的组分约占总PFASs的70%,而鱼肉中主要组分是PFOS,占总量的32.55%[84]。Zhang等发现山东沿海贝类中PFOA含量为nd~173.754 ng/g(湿重),占总量的83.98%[82]。东海贝类中也以PFOA为主,占49%[11],而在南海则以PFOS为主,如北部湾海洋生物体中PFOS为nd~1.53 ng/g(湿重),占36%[85],南海贝类和甲壳类中的PFOS约占总量的1/3[12]

    我国海洋生物体中短链PFASs也多有检出,如山东沿海贝类中F-53B含量为nd~0.181 ng/g(湿重)[82],东海19种鱼类中100%检出了F-53B,平均值为0.86 ng/g(湿重)[86],北部湾生物体中F-53B检出率也较高[85]。黄海海州湾甲壳类中PFBA为主要组分,平均含量为203 ng/g(干重)[87],东海贝类中PFBA为第二多组分,约占总量的35% [11],南海部分贝类样品中PFBA含量较高,占总PFASs的54.3%[12]

    国外不同海洋生物体间PFASs的含量和组成差异明显,这与物种间生物积累潜力差异以及不同海域PFASs的组成特征有关。欧洲海域生物体中以PFOS和其他长链组分为主,如波罗的海哥特兰岛附近鳕鱼肝脏中PFASs含量为6.03~23.9 ng/g(湿重),PFOS是主要组分,平均值为19.1 ng/g(湿重)[88],Junttila等报道波罗的海鲈鱼和鲱鱼中PFOS平均含量分别为3.4 ng/g和0.49 ng/g(湿重)[89],德国近海海豹肌肉中PFASs含量为387~606 ng/g(湿重),PFOS含量为367~577 ng/g(湿重)[90]。Catherine等对法国沿海贝类中PFASs的研究发现,2013年以来PFOS占比在下降,而一些长链PFASs如全氟十三酸的占比在增加,一方面与PFOS生产使用量降低有关,另一方面也与长链组分生产使用量的增加有关[91]。在希腊沿海,全氟十三酸是鲨鱼和鳐鱼中的主要组分(nd~27.1 ng/g,湿重),其次是全氟十一酸(nd~16.0 ng/g,湿重)和PFOS(nd~21.6 ng/g,湿重)[92]。在北大西洋,龙虾中PFASs含量为21.1 ng/g(湿重),主要由长链组分组成[93],在北太平洋,日本北海道海豚中以全氟十一酸(平均含量为305 ng/g,湿重)和全氟十四酸(平均含量为126 ng/g,湿重)为主,占总量的70% [94]。在同一类海洋生物体中,PFASs的分布存在地理差异,例如,Fujii等发现东北太平洋鳕鱼中PFASs含量为0.216~0.67 ng/g(湿重),日本沿海为0.819~1.71 ng/g(湿重),韩国沿海则为0.288~0.892 ng/g(湿重),日本鱼体样品中长链PFASs(C9-C14)占总量的96%,而在东北太平洋样品中仅占33%[95]。通过以上分析可以发现,海洋生物体中以长链PFASs为主[96],且与地理分布直接相关,源于中国、日本、韩国和欧美氟产业生产和使用情况导致的地理差异。

    不同种类海洋生物体中PFASs的含量和组成差异显著,这与海洋生物的不同营养级和富集能力有关[87]。在南海,PFOS的食物链营养级放大因子(1.57)要远高于PFOA(0.2),且短链PFASs在低营养级生物体中占比较高,而长链组分则在高营养级生物体中占比较高[97]。PFASs的碳链长度是影响其生物富集因子(bioaccumulation factor,BAF)的关键因素,且BAF随着氟碳原子数的增加而增大[97],如Lee等发现PFOS的BAFs为1.58~3.16(平均值为2.62),高于6个碳的全氟己基磺酸(0.46~2.45,平均值为1.65)和4个碳的PFBS(0.37~1.98,平均值为1.61)[29],Cheng等的研究结果也显示,海鱼体内F-53B的BAF(3.1±0.17)低于PFOS的BAF(3.4±0.22)[86],该结果也证明减少或禁止长链氟化物的生产使用,并用短链产品进行替代的政策是合适的。此外,PFASs的富集也与生物体的身体部位紧密相关,如在螃蟹体内,PFOA 含量从高到低依次为卵、内脏、身体、腿[98]

    尽管目前已有大量文献报道PFASs在不同海洋环境介质中的赋存,但综合来看,这些数据主要集中在欧洲、北美、日本、韩国和我国近海,除东亚以外的其他亚洲海域和非洲、南美洲、大洋洲海域环境中的PFASs的报道并不多。

    就不同海洋环境介质来看,目前PFASs的研究数据主要集中在海水和沉积物中,海洋生物体中的数据非常有限。考虑到海洋环境PFASs研究的最终目的要归于生物暴露水平及途径、健康效应与生态风险,不同海洋生物体中PFASs的赋存是非常重要的基础数据,因此海洋生物体中PFASs的赋存是今后研究的一个重要关注点。就海洋生物体种类来看,现有研究的生物体种类不一,各生物体间和各海域间的数据可比性差。因此,国际组织或国家开展大范围的普查性质的研究调查是亟需的,如统一开展贝类或当地野生鱼类肌肉组织中的PFASs调查,将大大提升海洋生物体中PFASs数据可比性与风险评价结果的可信性。

    就时间变化趋势来看,现有数据暂时难以支撑PFASs在海洋环境中的时间变化趋势评价,以及与国家氟产业政策/治理措施的环境影响之间的定量关系评价。因此,对近海或重点海域环境中典型PFASs的业务/研究监测将会非常迫切。

    就海洋环境PFASs的溯源来看,现有研究主要关注其在某一海洋环境介质中的赋存状况,对其多途径入海的溯源和通量研究有限,在定量计算模型、环境参数、水文动力参数等基础数据支撑方面还需要做更多工作。特别是流域−河口−海域连续体中PFASs的环境行为、入海通量及大气沉降输入等将是PFASs的赋存与环境行为研究的重点。

    就PFASs同系物种类来看,目前的研究主要集中在PFOA和PFOS等长链物质,对诸如F-53B和HFPO-DA等因氟产业政策变化而新出现或刚刚关注的一些短链PFASs的研究数据才陆续有所报道。考虑到将来短链氟化物将被大量生产和使用,显然今后应更多关注这些短链氟化物在海洋环境中的赋存与环境行为,以及PFASs组成特征与区域/国际氟产业政策间的关系。

    就检测方法和质量控制来看,现有文献报道中的数据差别较大,甚至存在两个数量级的差别。由此可见,加强对海洋环境中PFASs样品的采集、保存、运输、分析与数据处理等各环节操作的标准化、规范化,严格质量保证和质量控制要求,对保证研究数据的准确性和可靠性是极其重要的,也是未来PFASs调查监测与研究工作的关键技术点。

    国际上氟化物大量生产和使用,同时我国也是生产和使用大国之一,可以预见,在未来一段时间内,海洋环境中PFASs的赋存与全球输移等必然是新污染物治理关注的焦点之一。因此,积极开展海洋不同环境介质中PFASs的赋存与环境行为研究,特别是针对热点海域、热点目标物以及来源解析、海洋全球输移等,将有助于增强我国在国际新污染物治理谈判中的话语权,支撑我国尽早建立完善以流域—河口—海域连续体为主线的PFASs筛查、监测评价、精准溯源、环境风险管控技术体系。

  • 图  1   我国和其他国家海水中PFASs浓度比较[38-46]

    Fig.  1.   Comparison of PFASs concentrations in seawater of China and other countries

    图  2   我国和其他国家海水中PFOA和PFOS浓度比较[55-60]

    Fig.  2.   Comparison of PFOA and PFOS concentrations in seawater of China and other countries

    图  3   我国和其他国家沉积物中PFOA和PFOS含量比较[79-80]

    Fig.  3.   Comparison of PFOA and PFOS concentrations in coastal sediment of China and other countries

    表  1   我国和其他国家近海海域沉积物中PFASs含量

    Tab.  1   Comparison of PFASs concentrations in coastal sediment of China and other countries

    海域ΣPFASs含量范围/ng·g−1海域ΣPFASs含量范围/ng·g−1
    渤海湾[57]nd~1.1珠江口邻近海域[51]0.0008~0.084
    渤海莱州湾[58]0.12~2.1珠江口邻近海域[66]0.0242~0.1814
    渤海[64]0.06~2.98北部湾[47]0.19~0.66
    渤海(7月)[60]0.5~2.78北部湾[72]0.056~0.59
    渤海(11月)[60]0.33~1.75东山湾[73]0.15~0.37
    山东半岛沿海[20]1.3~11.17深圳湾[65]0.013~0.251
    大连湾[67]1.49~2.66日本东京湾[28]0.29~0.36
    渤海湾[61]2.69~25韩国半封闭海湾[68]0.006~0.82
    渤海[14]0.7~4.13韩国沿海[29]0.045~1.13
    黄海[64]nd~2.76中国黄海−韩国沿海[62]0.229~53.8
    胶州湾[21]0.459~1.2德国北海[69]0.056~7.4
    东海沿海[64]0.03~1.77德国北海[32]0.018~2.6
    东海沿海[43]0.41~3.06孟加拉湾[74]1.07~8.15
    厦门沿海[59]7.43~12.89美国普吉特湾[70]0.13~1.5
    厦门湾[26]3~5.4白令海[44]0.07~1.7
    东海沿海[17]0.033~0.486楚科奇克海[44]0.09~1.53
    东海到黄海沿海[63]0.209~4.74白令海−北冰洋[44]0.06~1.73
    深圳沿海[22]2.22~2.62北卡罗来纳州沿海[75]nd~7.47
    珠江口[76]nd~2.41美国查尔斯顿市河口[71]0.22~19.2
    下载: 导出CSV
  • [1]

    BUCK R C, MURPHY P M, PABON M. Chemistry, Properties, and Uses of Commercial Fluorinated Surfactants[M]//KNEPPER T P, LANGE F TPolyfluorinated Chemicals and Transformation Products. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012: 1-24[2023–03–27].

    [2] 张健康, 韩 旭, 赵国栋. 制革行业中的全氟化合物及其检测[J]. 中国皮革, 2014, 43(23): 32-35,44.
    [3]

    ABUNADA Z, ALAZAIZA M Y D, BASHIR M J K. An Overview of Per- and Polyfluoroalkyl Substances (PFAS) in the Environment: Source, Fate, Risk and Regulations[J]. Water, 2020, 12(12): 3590. doi: 10.3390/w12123590

    [4]

    MOUSAVI S E, DELGADO-SABORIT J M, GODDERIS L. Exposure to per- and polyfluoroalkyl substances and premature skin aging[J]. Journal of Hazardous Materials, 2021, 405: 124256. doi: 10.1016/j.jhazmat.2020.124256

    [5]

    PRESTON E V, WEBSTER T F, OKEN E, et al. Maternal Plasma per- and Polyfluoroalkyl Substance Concentrations in Early Pregnancy and Maternal and Neonatal Thyroid Function in a Prospective Birth Cohort: Project Viva (USA)[J]. Environmental Health Perspectives, 2018, 126(2): 027013. doi: 10.1289/EHP2534

    [6]

    STANIFER J W, STAPLETON H M, SOUMA T, et al. Perfluorinated Chemicals as Emerging Environmental Threats to Kidney Health: A Scoping Review[J]. Clinical Journal of the American Society of Nephrology, 2018, 13(10): 1479-1492. doi: 10.2215/CJN.04670418

    [7] 朱永乐, 汤家喜, 李梦雪, 等. 全氟化合物污染现状及与有机污染物联合毒性研究进展[J]. 生态毒理学报, 2021, 16(2): 86-99.
    [8]

    FAIR P A, WOLF B, WHITE N D, et al. Perfluoroalkyl substances (PFASs) in edible fish species from Charleston Harbor and tributaries, South Carolina, United States: Exposure and risk assessment[J]. Environmental Research, 2019, 171: 266-277. doi: 10.1016/j.envres.2019.01.021

    [9]

    BIRGERSSON L, JOUVE J, JÖNSSON E, et al. Thyroid function and immune status in perch (Perca fluviatilis) from lakes contaminated with PFASs or PCBs[J]. Ecotoxicology and Environmental Safety, 2021, 222: 112495. doi: 10.1016/j.ecoenv.2021.112495

    [10]

    FUJII Y, KATO Y, KOZAI M, et al. Different profiles of naturally produced and anthropogenic organohalogens in the livers of cetaceans from the Sea of Japan and the North Pacific Ocean[J]. Marine Pollution Bulletin, 2018, 136: 230-242. doi: 10.1016/j.marpolbul.2018.08.051

    [11]

    LIU R L, LIU M, ZHAO C X, et al. Occurrence and Health Risk of Perfluoroalkyl Acids in Popular Shellfish from a Typical Coastal Area of the East China[J]. Chemical Research in Chinese Universities, 2023, 39(3): 492-501. doi: 10.1007/s40242-023-3054-9

    [12]

    WANG X F, MO M S, CHEN H G, et al. Distribution and Exposure Risk Assessment of Perfluorinated Alkyl Substances in Aquatic Products along the Coastal Region of the South China Sea[J]. Exposure and Health, 2021, 13(3): 505-515. doi: 10.1007/s12403-021-00399-4

    [13]

    SONNE C, BANK M S, JENSSEN B M, et al. PFAS pollution threatens ecosystems worldwide[J]. Science, 2023, 379(6635): 887-888.

    [14]

    ZHAO Z, CHENG X H, HUA X, et al. Emerging and legacy per- and polyfluoroalkyl substances in water, sediment, and air of the Bohai Sea and its surrounding rivers[J]. Environmental Pollution, 2020, 263: 114391. doi: 10.1016/j.envpol.2020.114391

    [15]

    LIN K, HAN T Z, WANG R, et al. Spatiotemporal distribution, ecological risk assessment and source analysis of legacy and emerging Per- and Polyfluoroalkyl Substances in the Bohai Bay, China[J]. Chemosphere, 2022, 300: 134378. doi: 10.1016/j.chemosphere.2022.134378

    [16]

    ZHAO Z, TANG J H, MI L J, et al. Perfluoroalkyl and polyfluoroalkyl substances in the lower atmosphere and surface waters of the Chinese Bohai Sea, Yellow Sea, and Yangtze River estuary[J]. Science of The Total Environment, 2017, 599/600: 114-123. doi: 10.1016/j.scitotenv.2017.04.147

    [17]

    HU H, ZHANG Y Y, ZHAO N, et al. Legacy and emerging poly- and perfluorochemicals in seawater and sediment from East China Sea[J]. Science of The Total Environment, 2021, 797: 149052. doi: 10.1016/j.scitotenv.2021.149052

    [18]

    ZHENG H Y, WANG F, ZHAO Z, et al. Distribution profiles of per- and poly fluoroalkyl substances (PFASs) and their re-regulation by ocean currents in the East and South China Sea[J]. Marine Pollution Bulletin, 2017, 125(1/2): 481-486. doi: 10.1016/j.marpolbul.2017.08.009

    [19]

    ZHOU Y Q, WANG T Y, LI Q, et al. Spatial and vertical variations of perfluoroalkyl acids (PFAAs) in the Bohai and Yellow Seas: Bridging the gap between riverine sources and marine sinks[J]. Environmental Pollution, 2018, 238: 111-120. doi: 10.1016/j.envpol.2018.03.027

    [20]

    WAN Y, WANG S L, CAO X Z, et al. Perfluoroalkyl acids (PFAAs) in water and sediment from the coastal regions of Shandong peninsula, China[J]. Environmental Monitoring and Assessment, 2017, 189(3): 100. doi: 10.1007/s10661-017-5807-8

    [21] 崔文杰, 彭吉星, 谭志军, 等. 全氟烷基物质在胶州湾海水、沉积物及生物中污染特征[J]. 环境科学, 2019, 40(9): 3990-3999.
    [22] 刘宝林, 张 鸿, 谢刘伟, 等. 深圳近岸海域全氟化合物的污染特征[J]. 环境科学, 2015, 36(6): 2028-2037.
    [23]

    DU D, LU Y L, ZHOU Y Q, et al. Perfluoroalkyl acids (PFAAs) in water along the entire coastal line of China: Spatial distribution, mass loadings, and worldwide comparisons[J]. Environment International, 2022, 169: 107506. doi: 10.1016/j.envint.2022.107506

    [24]

    KWOK K Y, WANG X H, YA M, et al. Occurrence and distribution of conventional and new classes of per- and polyfluoroalkyl substances (PFASs) in the South China Sea[J]. Journal of Hazardous Materials, 2015, 285: 389-397. doi: 10.1016/j.jhazmat.2014.10.065

    [25]

    CAI M H, ZHAO Z, YANG H Z, et al. Spatial distribution of per- and polyfluoroalkyl compounds in coastal waters from the East to South China Sea[J]. Environmental Pollution, 2012, 161: 162-169. doi: 10.1016/j.envpol.2011.09.045

    [26]

    WANG S Q, MA L Y, CHEN C, et al. Occurrence and partitioning behavior of per- and polyfluoroalkyl substances (PFASs) in water and sediment from the Jiulong Estuary-Xiamen Bay, China[J]. Chemosphere, 2020, 238: 124578. doi: 10.1016/j.chemosphere.2019.124578

    [27]

    BEŠKOSKI V P, YAMAMOTO K, YAMAMOTO A, et al. Distribution of perfluoroalkyl compounds in Osaka Bay and coastal waters of Western Japan[J]. Chemosphere, 2017, 170: 260-265. doi: 10.1016/j.chemosphere.2016.12.028

    [28]

    AHRENS L, TANIYASU S, YEUNG L W Y, et al. Distribution of polyfluoroalkyl compounds in water, suspended particulate matter and sediment from Tokyo Bay, Japan[J]. Chemosphere, 2010, 79(3): 266-272. doi: 10.1016/j.chemosphere.2010.01.045

    [29]

    LEE J W, LEE H K, LIM J E, et al. Legacy and emerging per- and polyfluoroalkyl substances (PFASs) in the coastal environment of Korea: Occurrence, spatial distribution, and bioaccumulation potential[J]. Chemosphere, 2020, 251: 126633. doi: 10.1016/j.chemosphere.2020.126633

    [30]

    LAM N H, MIN B K, CHO C R, et al. Distribution of perfluoroalkyl substances in water from industrialized bays, rivers and agricultural areas in Korea[J]. Toxicology and Environmental Health Sciences, 2016, 8(1): 43-55. doi: 10.1007/s13530-016-0260-6

    [31]

    ZHAO Z, XIE Z, TANG J H, et al. Seasonal variations and spatial distributions of perfluoroalkyl substances in the rivers Elbe and lower Weser and the North Sea[J]. Chemosphere, 2015, 129: 118-125. doi: 10.1016/j.chemosphere.2014.03.050

    [32]

    JOERSS H, APEL C, EBINGHAUS R. Emerging per- and polyfluoroalkyl substances (PFASs) in surface water and sediment of the North and Baltic Seas[J]. Science of The Total Environment, 2019, 686: 360-369. doi: 10.1016/j.scitotenv.2019.05.363

    [33]

    ZHAO Z, XIE Z Y, MÖLLER A, et al. Distribution and long-range transport of polyfluoroalkyl substances in the Arctic, Atlantic Ocean and Antarctic coast[J]. Environmental Pollution, 2012, 170: 71-77. doi: 10.1016/j.envpol.2012.06.004

    [34]

    CAI M H, ZHAO Z G, YIN Z, et al. Occurrence of Perfluoroalkyl Compounds in Surface Waters from the North Pacific to the Arctic Ocean[J]. Environmental Science & Technology, 2012, 46(2): 661-668.

    [35]

    JOYCE DINGLASAN-PANLILIO M, PRAKASH S S, BAKER J E. Perfluorinated compounds in the surface waters of Puget Sound, Washington and Clayoquot and Barkley Sounds, British Columbia[J]. Marine Pollution Bulletin, 2014, 78(1/2): 173-180.

    [36]

    DA SILVA B F, ARISTIZABAL-HENAO J J, AUFMUTH J, et al. Survey of per- and polyfluoroalkyl substances (PFAS) in surface water collected in Pensacola, FL[J]. Heliyon, 2022, 8(8): e10239. doi: 10.1016/j.heliyon.2022.e10239

    [37]

    BENSKIN J P, MUIR D C G, SCOTT B F, et al. Perfluoroalkyl Acids in the Atlantic and Canadian Arctic Oceans[J]. Environmental Science & Technology, 2012, 46(11): 5815-5823.

    [38]

    FENG X M, YE M Q, LI Y, et al. Potential sources and sediment-pore water partitioning behaviors of emerging per/polyfluoroalkyl substances in the South Yellow Sea[J]. Journal of Hazardous Materials, 2020, 389: 122124. doi: 10.1016/j.jhazmat.2020.122124

    [39]

    LI L, ZHENG H Y, WANG T, et al. Perfluoroalkyl acids in surface seawater from the North Pacific to the Arctic Ocean: Contamination, distribution and transportation[J]. Environmental Pollution, 2018, 238: 168-176. doi: 10.1016/j.envpol.2018.03.018

    [40]

    AHRENS L, GERWINSKI W, THEOBALD N, et al. Sources of polyfluoroalkyl compounds in the North Sea, Baltic Sea and Norwegian Sea: Evidence from their spatial distribution in surface water[J]. Marine Pollution Bulletin, 2010, 60(2): 255-260. doi: 10.1016/j.marpolbul.2009.09.013

    [41]

    PAN C G, YU K F, WANG Y H, et al. Perfluoroalkyl substances in the riverine and coastal water of the Beibu Gulf, South China: Spatiotemporal distribution and source identification[J]. Science of The Total Environment, 2019, 660: 297-305. doi: 10.1016/j.scitotenv.2019.01.019

    [42]

    NGUYEN M A, WIBERG K, RIBELI E, et al. Spatial distribution and source tracing of per- and polyfluoroalkyl substances (PFASs) in surface water in Northern Europe[J]. Environmental Pollution, 2017, 220: 1438-1446. doi: 10.1016/j.envpol.2016.10.089

    [43]

    WANG Q W, YANG G P, ZHANG Z M, et al. Perfluoroalkyl acids in surface sediments of the East China Sea[J]. Environmental Pollution, 2017, 231: 59-67. doi: 10.1016/j.envpol.2017.07.078

    [44]

    LIN Y, JIANG J J, RODENBURG L A, et al. Perfluoroalkyl substances in sediments from the Bering Sea to the western Arctic: Source and pathway analysis[J]. Environment International, 2020, 139: 105699. doi: 10.1016/j.envint.2020.105699

    [45]

    SHI B, WANG T H, YANG H F, et al. Perfluoroalkyl acids in rapidly developing coastal areas of China and South Korea: Spatiotemporal variation and source apportionment[J]. Science of The Total Environment, 2021, 761: 143297. doi: 10.1016/j.scitotenv.2020.143297

    [46]

    CHEN H, MUNOZ G, DUY S V, et al. Occurrence and Distribution of Per- and Polyfluoroalkyl Substances in Tianjin, China: The Contribution of Emerging and Unknown Analogues[J]. Environmental Science & Technology, 2020, 54(22): 14254-14264.

    [47]

    XIAO S K, WU Q, PAN C G, et al. Distribution, partitioning behavior and potential source of legacy and alternative per- and polyfluoroalkyl substances (PFASs) in water and sediments from a subtropical Gulf, South China Sea[J]. Environmental Research, 2021, 201: 111485. doi: 10.1016/j.envres.2021.111485

    [48] 向 前, 单国强, 邬 畏, 等. 全氟/多氟烷基化合物在全球海洋水体中的污染演变趋势研究进展[J]. 科学通报, 2019, 64(9): 910-921.
    [49] 薛欢欢, 丁光辉, 张楠楠, 等. 大连湾表层海水全氟烷基化合物污染水平及分布研究[J]. 海洋环境科学, 2018, 37(2): 252-257.
    [50]

    WANG S Q, DING G H, LIU Y H, et al. Legacy and emerging persistent organic pollutants in the marginal seas of China: Occurrence and phase partitioning[J]. Science of The Total Environment, 2022, 827: 154274. doi: 10.1016/j.scitotenv.2022.154274

    [51]

    WANG Q, TSUI M M P, RUAN Y F, et al. Occurrence and distribution of per- and polyfluoroalkyl substances (PFASs) in the seawater and sediment of the South China sea coastal region[J]. Chemosphere, 2019, 231: 468-477. doi: 10.1016/j.chemosphere.2019.05.162

    [52]

    NAILE J E, KHIM J S, WANG T Y, et al. Perfluorinated compounds in water, sediment, soil and biota from estuarine and coastal areas of Korea[J]. Environmental Pollution, 2010, 158(5): 1237-1244. doi: 10.1016/j.envpol.2010.01.023

    [53]

    ZHANG X M, LOHMANN R, SUNDERLAND E M. Poly- and Perfluoroalkyl Substances in Seawater and Plankton from the Northwestern Atlantic Margin[J]. Environmental Science & Technology, 2019, 53(21): 12348-12356.

    [54]

    SÁNCHEZ-AVILA J, MEYER J, LACORTE S. Spatial distribution and sources of perfluorochemicals in the NW Mediterranean coastal waters (Catalonia, Spain)[J]. Environmental Pollution, 2010, 158(9): 2833-2840. doi: 10.1016/j.envpol.2010.06.022

    [55]

    WANG T, LU Y, CHEN C, et al. Perfluorinated compounds in estuarine and coastal areas of north Bohai Sea, China[J]. Marine Pollution Bulletin, 2011, 62(8): 1905-1914. doi: 10.1016/j.marpolbul.2011.05.029

    [56]

    THEOBALD N, CALIEBE C, GERWINSKI W, et al. Occurrence of perfluorinated organic acids in the North and Baltic seas.[J]. Environmental Science and Pollution Research, 2011, 18(7): 1057-1069. doi: 10.1007/s11356-011-0451-2

    [57]

    CHEN C, WANG T, KHIM J S, et al. Perfluorinated compounds in water and sediment from coastal regions of the northern Bohai Sea, China[J]. Chemistry and Ecology, 2011, 27(2): 165-176. doi: 10.1080/02757540.2010.547485

    [58]

    ZHAO Z, TANG J H, XIE Z Y, et al. Perfluoroalkyl acids (PFAAs) in riverine and coastal sediments of Laizhou Bay, North China[J]. Science of The Total Environment, 2013, 447: 415-423. doi: 10.1016/j.scitotenv.2012.12.095

    [59]

    DAI Z N, ZENG F S. Distribution and Bioaccumulation of Perfluoroalkyl Acids in Xiamen Coastal Waters[J]. Journal of Chemistry, 2019, 2019: 1-8.

    [60]

    CHEN H, SUN R J, ZHANG C, et al. Occurrence, spatial and temporal distributions of perfluoroalkyl substances in wastewater, seawater and sediment from Bohai Sea, China[J]. Environmental Pollution, 2016, 219: 389-398. doi: 10.1016/j.envpol.2016.05.017

    [61]

    LIU Y Q, ZHANG Y, LI J F, et al. Distribution, partitioning behavior and positive matrix factorization-based source analysis of legacy and emerging polyfluorinated alkyl substances in the dissolved phase, surface sediment and suspended particulate matter around coastal areas of Bohai Bay, China[J]. Environmental Pollution, 2019, 246: 34-44. doi: 10.1016/j.envpol.2018.11.113

    [62] 周云桥, 杨 璐, 孟 晶, 等. 中、韩滨海城市化区域水体全氟化合物的空间特征及生态风险[J]. 环境科学, 2020, 41(4): 1607-1618.
    [63]

    ZHONG H F, ZHENG M G, LIANG Y, et al. Legacy and emerging per- and polyfluoroalkyl substances (PFAS) in sediments from the East China Sea and the Yellow Sea: Occurrence, source apportionment and environmental risk assessment[J]. Chemosphere, 2021, 282: 131042. doi: 10.1016/j.chemosphere.2021.131042

    [64]

    GAO Y, FU J J, ZENG L X, et al. Occurrence and fate of perfluoroalkyl substances in marine sediments from the Chinese Bohai Sea, Yellow Sea, and East China Sea[J]. Environmental Pollution, 2014, 194: 60-68. doi: 10.1016/j.envpol.2014.07.018

    [65]

    GUO D X, ZHOU Y, CHEN F, et al. Temporal variation of per- and polyfluoroalkyl substances (PFASs) abundances in Shenzhen Bay sediments over past 65 years[J]. Marine Pollution Bulletin, 2023, 194: 115387. doi: 10.1016/j.marpolbul.2023.115387

    [66]

    CHEN L G, TSUI M M P, LAM J C W, et al. Contamination by perfluoroalkyl substances and microbial community structure in Pearl River Delta sediments[J]. Environmental Pollution, 2019, 245: 218-225. doi: 10.1016/j.envpol.2018.11.005

    [67]

    DING G H, XUE H H, ZHANG J, et al. Occurrence and distribution of perfluoroalkyl substances (PFASs) in sediments of the Dalian Bay, China[J]. Marine Pollution Bulletin, 2018, 127: 285-288. doi: 10.1016/j.marpolbul.2017.12.020

    [68]

    SHEN A H, LEE S, RA K, et al. Historical trends of perfluoroalkyl substances (PFASs) in dated sediments from semi-enclosed bays of Korea[J]. Marine Pollution Bulletin, 2018, 128: 287-294. doi: 10.1016/j.marpolbul.2018.01.039

    [69]

    ZHAO Z, XIE Z Y, TANG J H, et al. Spatial distribution of perfluoroalkyl acids in surface sediments of the German Bight, North Sea[J]. Science of The Total Environment, 2015, 511: 145-152. doi: 10.1016/j.scitotenv.2014.12.063

    [70]

    LONG E R, DUTCH M, WEAKLAND S, et al. Quantification of pharmaceuticals, personal care products, and perfluoroalkyl substances in the marine sediments of Puget Sound, Washington, USA: PPCPs and PFASs in Puget Sound sediments[J]. Environmental Toxicology and Chemistry, 2013, 32(8): 1701-1710. doi: 10.1002/etc.2281

    [71]

    WHITE N D, BALTHIS L, KANNAN K, et al. Elevated levels of perfluoroalkyl substances in estuarine sediments of Charleston, SC[J]. Science of the Total Environment, 2015, 521/522: 79-89. doi: 10.1016/j.scitotenv.2015.03.078

    [72]

    PAN C G, WANG Y H, YU K F, et al. Occurrence and distribution of perfluoroalkyl substances in surface riverine and coastal sediments from the Beibu Gulf, south China[J]. Marine Pollution Bulletin, 2020, 150: 110706. doi: 10.1016/j.marpolbul.2019.110706

    [73]

    LIN X P, WANG S Q, LI Q, et al. Occurrence, partitioning behavior and risk assessments of per- and polyfluoroalkyl substances in water, sediment and biota from the Dongshan Bay, China[J]. Chemosphere, 2022, 291: 132812. doi: 10.1016/j.chemosphere.2021.132812

    [74]

    HABIBULLAH-AL-MAMUN, AHMED K, RAKNUZZAMAN M, et al. Occurrence and distribution of perfluoroalkyl acids (PFAAs) in surface water and sediment of a tropical coastal area (Bay of Bengal coast, Bangladesh)[J]. Science of The Total Environment, 2016, 571: 1089-1104. doi: 10.1016/j.scitotenv.2016.07.104

    [75]

    SHIMIZU M S, GARCIA R S, AVERY G B, et al. Distribution of legacy and emerging per- and polyfluoroalkyl substances in riverine and coastal sediments of Southeastern North Carolina, USA[J]. Environmental Science:Processes & Impacts, 2022, 24(11): 2119-2128.

    [76]

    GAO Y, FU J J, MENG M, et al. Spatial distribution and fate of perfluoroalkyl substances in sediments from the Pearl River Estuary, South China[J]. Marine Pollution Bulletin, 2015, 96(1/2): 226-234. doi: 10.1016/j.marpolbul.2015.05.022

    [77]

    PAN Y T, ZHANG H X, CUI Q Q, et al. Worldwide Distribution of Novel Perfluoroether Carboxylic and Sulfonic Acids in Surface Water[J]. Environmental Science & Technology, 2018, 52(14): 7621-7629.

    [78]

    PIGNOTTI E, CASAS G, LLORCA M, et al. Seasonal variations in the occurrence of perfluoroalkyl substances in water, sediment and fish samples from Ebro Delta (Catalonia, Spain) [J]. Science of The Total Environment, 2017, 607-608: 933-943.

    [79]

    SAKURAI T, SERIZAWA S, ISOBE T, et al. Spatial, Phase, And Temporal Distributions of Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoate (PFOA) in Tokyo Bay, Japan[J]. Environmental Science & Technology, 2010, 44(11): 4110-4115.

    [80]

    THEOBALD N, CALIEBE C, GERWINSKI W, et al. Occurrence of perfluorinated organic acids in the North and Baltic Seas.[J]. Environmental Science and Pollution Research, 2012, 19(2): 313-324. doi: 10.1007/s11356-011-0559-4

    [81]

    GUO M M, ZHENG G C, PENG J X, et al. Distribution of perfluorinated alkyl substances in marine shellfish along the Chinese Bohai Sea coast[J]. Journal of Environmental Science and Health, Part B, 2019, 54(4): 271-280. doi: 10.1080/03601234.2018.1559570

    [82]

    ZHANG J C, LI W, YANG L P, et al. Legacy per- and polyfluoroalkyl substances (PFASs) especially alternative PFASs in shellfish from Shandong Province, China: Distribution, sources, and health risk[J]. Marine Pollution Bulletin, 2023, 195: 115465. doi: 10.1016/j.marpolbul.2023.115465

    [83]

    DIAO J Y, CHEN Z W, WANG T Y, et al. Perfluoroalkyl substances in marine food webs from South China Sea: Trophic transfer and human exposure implication[J]. Journal of Hazardous Materials, 2022, 431: 128602. doi: 10.1016/j.jhazmat.2022.128602

    [84]

    GUO M M, WU F, GENG Q Q, et al. Perfluoroalkyl substances (PFASs) in aquatic products from the Yellow-Bohai Sea coasts, China: Concentrations and profiles across species and regions[J]. Environmental Pollution, 2023, 327: 121514. doi: 10.1016/j.envpol.2023.121514

    [85]

    PAN C G, XIAO S K, YU K F, et al. Legacy and alternative per- and polyfluoroalkyl substances in a subtropical marine food web from the Beibu Gulf, South China: Fate, trophic transfer and health risk assessment[J]. Journal of Hazardous Materials, 2021, 403: 123618. doi: 10.1016/j.jhazmat.2020.123618

    [86]

    CHENG H X, LV C H, LI J H, et al. Bioaccumulation and biomagnification of emerging poly- and perfluoroalkyl substances in marine organisms[J]. Science of The Total Environment, 2022, 851: 158117. doi: 10.1016/j.scitotenv.2022.158117

    [87]

    ZHANG A Q, WANG P, LU Y L, et al. Occurrence and health risk of perfluoroalkyl acids (PFAAs) in seafood from Yellow Sea, China[J]. Science of The Total Environment, 2019, 665: 1026-1034. doi: 10.1016/j.scitotenv.2019.02.165

    [88]

    SCHULTES L, SANDBLOM O, BROEG K, et al. Temporal Trends (1981-2013) of per- and polyfluoroalkyl substances and total fluorine in Baltic cod (Gadus morhua)[J]. Environmental Toxicology and Chemistry, 2020, 39(2): 300-309. doi: 10.1002/etc.4615

    [89]

    JUNTTILA V, VÄHÄ, PERKOLA N, et al. PFASs in Finnish Rivers and Fish and the Loading of PFASs to the Baltic Sea[J]. Water, 2019, 11(4): 870. doi: 10.3390/w11040870

    [90]

    AHRENS L, SIEBERT U, EBINGHAUS R. Temporal trends of polyfluoroalkyl compounds in harbor seals (Phoca vitulina) from the German Bight, 1999–2008[J]. Chemosphere, 2009, 76(2): 151-158. doi: 10.1016/j.chemosphere.2009.03.053

    [91]

    CATHERINE M, NADÈGE B, CHARLES P, et al. Perfluoroalkyl substances (PFASs) in the marine environment: Spatial distribution and temporal profile shifts in shellfish from French coasts[J]. Chemosphere, 2019, 228: 640-648. doi: 10.1016/j.chemosphere.2019.04.205

    [92]

    ZAFEIRAKI E, GEBBINK W A, VAN LEEUWEN S P J, et al. Occurrence and tissue distribution of perfluoroalkyl substances (PFASs) in sharks and rays from the eastern Mediterranean Sea[J]. Environmental Pollution, 2019, 252: 379-387. doi: 10.1016/j.envpol.2019.05.120

    [93]

    HEDGESPETH M L, TAYLOR D L, BALINT S, et al. Ecological characteristics impact PFAS concentrations in a U. S. North Atlantic food web[J]. Science of The Total Environment, 2023, 880: 163302. doi: 10.1016/j.scitotenv.2023.163302

    [94]

    FUJII Y, KATO Y, SAKAMOTO K, et al. Tissue-specific bioaccumulation of long-chain perfluorinated carboxylic acids and halogenated methylbipyrroles in Dall’s porpoises (Phocoenoides dalli) and harbor porpoises (Phocoena phocoena) stranded in northern Japan[J]. Science of The Total Environment, 2018, 616-617: 554-563.

    [95]

    FUJII Y, TUDA H, KATO Y, et al. Levels and profiles of long-chain perfluoroalkyl carboxylic acids in Pacific cod from 14 sites in the North Pacific Ocean[J]. Environmental Pollution, 2019, 247: 312-318. doi: 10.1016/j.envpol.2019.01.006

    [96]

    MARTÍN J, HIDALGO F, GARCÍA-CORCOLES M T, et al. Bioaccumulation of perfluoroalkyl substances in marine echinoderms: Results of laboratory-scale experiments with Holothuria tubulosa Gmelin, 1791[J]. Chemosphere, 2019, 215.

    [97]

    DU D, LU Y L, ZHOU Y Q, et al. Bioaccumulation, trophic transfer and biomagnification of perfluoroalkyl acids (PFAAs) in the marine food web of the South China Sea[J]. Journal of Hazardous Materials, 2021, 405: 124681. doi: 10.1016/j.jhazmat.2020.124681

    [98]

    CHOI S, KIM J J, KIM M H, et al. Origin and organ-specific bioaccumulation pattern of perfluorinated alkyl substances in crabs[J]. Environmental Pollution, 2020, 261: 114185. doi: 10.1016/j.envpol.2020.114185

图(3)  /  表(1)
计量
  • 文章访问数:  196
  • HTML全文浏览量:  82
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-26
  • 修回日期:  2024-04-10
  • 录用日期:  2024-04-10
  • 网络出版日期:  2024-04-23
  • 刊出日期:  2024-08-29

目录

/

返回文章
返回
x 关闭 永久关闭