Citation: | HAN Ying, SUN Kai-qiang, ZHANG Dong, WANG Le-hao, TAN Hao-ran. A hybrid sea surface temperature predicting method based on deep learning[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2022, 41(5): 791-798. DOI: 10.12111/j.mes.2021-x-0148 |
Sea surface temperature (SST) is an important parameter of ocean hydrology, and accurate prediction of SST is of great significance for ocean economic development and extreme weather prevention. For the characteristics of SST series with multiple noises, variational model decomposition (VMD) is used to pre-process the SST series and reduce the influence of noise on the prediction results. Furthermore, the convolutional neural network (CNN) is combined with the long short-term memory network (LSTM) extracting both spatial and temporal features in SST sequences to improve the prediction accuracy. Finally, a SST prediction model based on deep learning with incorporating the denoising module is proposed in this paper. The SST of China's East China Sea waters is selected for empirical study. Through comparison and analysis with the baseline models and existing models, it is proved that the model in this paper not only improves the SST prediction accuracy significantly, but also has better robustness.
[1] |
王利亚. 海表面温度对热带气旋的影响[J]. 集成电路应用, 2021, 38(4): 182-183.
|
[2] |
周 倩, 凌铁军, 李 响, 等. 中国周边海域海面温度日变化对区域气候的影响[J]. 气候与环境研究, 2019, 24(2): 214-226. doi: 10.3878/j.issn.1006-9585.2018.18087
|
[3] |
孙伟富, 张 杰, 孟俊敏, 等. 中国南海及邻近海域SST时空分布和变化特征分析[J]. 海洋科学进展, 2018, 36(3): 402-411. doi: 10.3969/j.issn.1671-6647.2018.03.007
|
[4] |
张绪东, 张菀伦, 李云波. 北黄海海温分布变化的数值模拟分析[J]. 海洋预报, 2015, 32(5): 89-97. doi: 10.11737/j.issn.1003-0239.2015.05.011
|
[5] |
张玉荣. 大连附近海域幼鲍安全越冬海水温度预报方法的研究[J]. 海洋环境科学, 1992, 11(1): 34-38.
|
[6] |
LINS I D, ARAUJO M, DAS CHAGASMOURA M, et al. Prediction of sea surface temperature in the tropical Atlantic by support vector machines[J]. Computational Statistics & Data Analysis, 2013, 61: 187-198.
|
[7] |
PATIL K, DEO M C. Basin-Scale prediction of sea surface temperature with artificial neural networks[J]. Journal of Atmospheric and Oceanic Technology, 2018, 35(7): 1441-1455. doi: 10.1175/JTECH-D-17-0217.1
|
[8] |
WEI L, GUAN L, QU L Q. Prediction of sea surface temperature in the south China sea by artificial neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(4): 558-562. doi: 10.1109/LGRS.2019.2926992
|
[9] |
朱贵重, 胡 松. 基于LSTM-RNN的海水表面温度模型研究[J]. 应用海洋学学报, 2019, 38(2): 191-197. doi: 10.3969/J.ISSN.2095-4972.2019.02.005
|
[10] |
ZHANG Z, PAN X L, JIANG T, et al. Monthly and quarterly sea surface temperature prediction based on gated recurrent unit neural network[J]. Journal of Marine Science and Engineering, 2020, 8(4): 249. doi: 10.3390/jmse8040249
|
[11] |
XU H F, CHAI L, LUO Z M, et al. Stock movement predictive network via incorporative attention mechanisms based on tweet and historical prices[J]. Neurocomputing, 2020, 418: 326-339. doi: 10.1016/j.neucom.2020.07.108
|
[12] |
XIAO C J, CHEN N C, HU C L, et al. Short and mid-term sea surface temperature prediction using time-series satellite data and LSTM-AdaBoost combination approach[J]. Remote Sensing of Environment, 2019, 233: 111358. doi: 10.1016/j.rse.2019.111358
|
[13] |
XIAO C J, CHEN N C, HU C L, et al. A spatiotemporal deep learning model for sea surface temperature field prediction using time-series satellite data[J]. Environmental Modelling & Software, 2019, 120: 104502.
|
[14] |
程泽梅. 1960~2013年华南沿海SST变化特征的相关分析[D]. 青岛: 中国海洋大学, 2015: 20-23.
|
[15] |
贺 琪, 查 铖, 宋 巍, 等. 基于STL的海表面温度预测算法[J]. 海洋环境科学, 2020, 39(6): 918-925. doi: 10.12111/j.mes.20190232
|
[16] |
贺 琪, 胡泽煜, 徐慧芳, 等. 基于经验模态分解-门控循环模型的海表温度预测方法[J]. 激光与光电子学进展, 2021, 58(24): 2415005.
|
[1] | WANG Lina, QI Zhiyuan, ZHANG Hongchun, DONG Changming. Prediction of significant wave height based on CNN-STLSTM-CNN model[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2024, 43(3): 417-429. DOI: 10.12111/j.mes.2023-x-0127 |
[2] | DU Jiahao, NIE Jie, YE Min, SONG Derui, GAO Zhen, WEI Zhiqiang. A deep neural networks prediction model for sea surface temperature based on global cross-scale spatial-temporal attention[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2023, 42(6): 944-954. DOI: 10.12111/j.mes.2023-x-0048 |
[3] | ZHANG Xue-wei, HAN Zhen. Prediction and analysis of Argo temperature data by ConvGRU model[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2022, 41(4): 628-635. DOI: 10.12111/j.mes.20210054 |
[4] | WEI Hai-feng, TIAN Shan-chuan, ZHAO Xiao-yi, LIU Chang-fa, ZHOU Ji-ti. Study on the bioaccumulation kinetics of three PAHs by Apostichopus japonicus[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2019, 38(5): 663-668. DOI: 10.12111/j.mes20190503 |
[5] | CHEN Chen, MA Yi, HU Ya-bin, ZHANG Jing-yu. A Convolution neural network model with adaptive learning rate and its application-a case study of remote sensing classification of coastal wetland[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2019, 38(4): 621-627. DOI: 10.12111/j.mes20190421 |
[6] | JING Xiao-li, MI Tie-zhu, ZHEN Yu, FU Bao-zhong, LI Cheng-feng, YU Zhi-gang. Description of nitrogen metabolism pathway based on Skeletonema marinoi transcriptome[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2016, 35(5): 703-711. DOI: 10.13634/j.cnki.mes20160511 |
[7] | QIAO Ling, ZHEN Yu, MI Tie-Zhu. Review of the brown tides caused by Aureococcus anophagefferens[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2016, 35(3): 473-480. DOI: 10.13634/j.cnki.mes20160324 |
[8] | SONG Wan-jiao, DONG Qing, XUE Cun-jin, WU Shu-chao. Relationships between two types El Niño events and sea surface temperature of tropical and North Pacific[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2016, 35(3): 410-416,433. DOI: 10.13634/j.cnki.mes20160314 |
[9] | LI Lei, JIANG Mei, SHEN Xin-qiang, WANG Yun-long, WU Qing-yuan, NIU Jun-xiang, XU Gao-peng. Effects of Cr(VI) on the activities of SOD,concentration of MDA and MTs inhepatopancreas and gilltsissue of Portunus trituberculatus[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2015, 34(6): 838-843. DOI: 10.13634/j.cnki.mes.2015.06.007 |
[10] | LI Lei, JIANG Mei, SHEN Xin-qiang, WANG Yun-long, WU Qing-yuan, NIU Jun-xiang, XU Gao-peng. Effects of benzo[a]pyrene exposure on biomarkers in Exopalaemon carinicauda liver[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2015, 34(4): 513-518. DOI: 10.13634/j.cnki.mes.2015.04.007 |
1. |
韩莹,曹允重,张凌珺,赵芮晗,董昌明. 融合IVMD的海表温度时空智能预测方法. 海洋测绘. 2024(03): 53-57+61 .
![]() | |
2. |
周国良,周锋. 基于IWOA优化Res-BiGRU深度学习模型的海表温度预测方法. 海洋环境科学. 2024(05): 806-816 .
![]() |