• 中文核心期刊
  • 中国科技核心期刊
  • ISSN 1007-6336
  • CN 21-1168/X
LIU Yu, HAO Xiaoyu, FAN Weijia, WANG Guoguang. Effects of different carbon sources on mitigation of toxicity of oil spill to Nitzschia Closterium[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2023, 42(4): 534-541. DOI: 10.12111/j.mes.2022-x-0116
Citation: LIU Yu, HAO Xiaoyu, FAN Weijia, WANG Guoguang. Effects of different carbon sources on mitigation of toxicity of oil spill to Nitzschia Closterium[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2023, 42(4): 534-541. DOI: 10.12111/j.mes.2022-x-0116

Effects of different carbon sources on mitigation of toxicity of oil spill to Nitzschia Closterium

More Information
  • Received Date: May 10, 2022
  • Revised Date: July 25, 2022
  • Accepted Date: July 27, 2022
  • Available Online: July 10, 2023
  • In order to alleviate the toxic effects of offshore oil spill stress on Marine microalgae, adding different carbon sources may be one of the effective ways. By adding different concentrations of glucose (C6H12O6) and sodium bicarbonate (NaHCO3), the alleviation effect of exogenous carbon sources on the toxicity of Nitzschia closterium under 180# fuel oil dispersion (WAF) stress was investigated. Under different concentrations of NaHCO3, the cell density and Chl a content increased, while the level of lipid peroxidation decreased. Four days later, the fatty acid composition of N. closterium was basically the same as that of the normal group, and the toxic effect was obviously relieved. Different concentrations of C6H12O6 reduced the content of Chl a in N. closterium and increased its C18:1n-9 ratio significantly. Low concentration of C6H12O6 had less alleviation effect on the toxic effect of N. closterium under WAF stress, while high concentration of C6H12O6 aggravated the toxic effect of WAF, resulting in more serious lipid peroxidation. Therefore, adding an appropriate concentration of NaHCO3 could alleviate the toxic effect of WAF on N. closterium to a certain extent.

  • [1]
    STEPANIYAN O V. Effects of crude oil on major functional characteristics of macroalgae of the Barents Sea[J]. Russian Journal of Marine Biology, 2008, 34(2): 131-134. doi: 10.1134/S1063074008020077
    [2]
    GONZÁLEZ J J, VIÑAS L, FRANCO M A, et al. Spatial and temporal distribution of dissolved/dispersed aromatic hydrocarbons in seawater in the area affected by the Prestige oil spill[J]. Marine Pollution Bulletin, 2006, 53(5/6/7): 250-259.
    [3]
    HUANG Y J, JIANG Z B, ZENG J N, et al. The chronic effects of oil pollution on marine phytoplankton in a subtropical bay, China[J]. Environmental Monitoring and Assessment, 2011, 176(1/2/3/4): 517-530.
    [4]
    张聿柏. 石油烃对海洋微藻的毒性效应及其机理研究[D]. 青岛: 中国海洋大学, 2013.
    [5]
    CHAO M, SHEN X Q, LUN F X, et al. Toxicity of fuel oil water accommodated fractions on two marine microalgae, Skeletonema costatum and Chlorela spp[J]. Bulletin of Environmental Contamination and Toxicology, 2012, 88(5): 712-716. doi: 10.1007/s00128-012-0525-y
    [6]
    RAMADASS K, MEGHARAJ M, VENKATESWARLU K, et al. Toxicity of diesel water accommodated fraction toward microalgae, Pseudokirchneriella subcapitata and Chlorella sp. MM3[J]. Ecotoxicology and Environmental Safety, 2017, 142: 538-543. doi: 10.1016/j.ecoenv.2017.04.052
    [7]
    TU Z M, LIU L T, LIN W T, et al. Potential of using sodium bicarbonate as external carbon source to cultivate microalga in non-sterile condition[J]. Bioresource Technology, 2018, 266: 109-115. doi: 10.1016/j.biortech.2018.06.076
    [8]
    ABINANDAN S, SHANTHAKUMAR S. Erratum to: evaluation of photosynthetic efficacy and CO2 removal of microalgae grown in an enriched bicarbonate medium[J]. 3 Biotech, 2016, 6(1): 77. doi: 10.1007/s13205-016-0374-1
    [9]
    贺迎霞. 一株绿球藻对不同浓度葡萄糖的响应机制研究[D]. 太原: 山西大学, 2021.
    [10]
    王 曼. 浮游植物叶绿素a4种提取方法的比较[J]. 中国实用医药, 2013, 8(22): 263-264. doi: 10.3969/j.issn.1673-7555.2013.22.202
    [11]
    ZHAO Z Y, MA S S, LI A, et al. Effects of trophic modes, carbon sources, and salinity on the cell growth and lipid accumulation of tropic ocean oilgae strain Desmodesmus sp. WC08[J]. Applied Biochemistry and Biotechnology, 2016, 180(3): 452-463. doi: 10.1007/s12010-016-2109-5
    [12]
    CLAUS S, JEZIERSKA S, VAN BOGAERT I N A. Protein‐facilitated transport of hydrophobic molecules across the yeast plasma membrane[J]. FEBS Letters, 2019, 593(13): 1508-1527. doi: 10.1002/1873-3468.13469
    [13]
    LIU F J, TU T X, LI S X, et al. Relationship between plankton-based β-carotene and biodegradable adaptablity to petroleum-derived hydrocarbon[J]. Chemosphere, 2019, 237: 124430. doi: 10.1016/j.chemosphere.2019.124430
    [14]
    MOKASHI K, SHETTY V, GEORGE S A, et al. Sodium bicarbonate as inorganic carbon source for higher biomass and lipid production integrated carbon capture in Chlorella vulgaris[J]. Achievements in the Life Sciences, 2016, 10(1): 111-117. doi: 10.1016/j.als.2016.05.011
    [15]
    彭文琴. 不同碳源和光照周期对三种微藻生长及油脂积累的影响[D]. 南昌: 南昌大学, 2012.
    [16]
    ROTH M S, GALLAHER S D, WESTCOTT D J, et al. Regulation of oxygenic photosynthesis during trophic transitions in the green alga Chromochloris zofingiensis[J]. The Plant Cell, 2019, 31(3): 579-601. doi: 10.1105/tpc.18.00742
    [17]
    FOYER C H, NOCTOR G. Stress‐triggered redox signalling: what's in pROSpect?[J]. Plant, Cell & Environment, 2016, 39(5): 951-964.
    [18]
    刘 浩, 杭雨晴, 朱帅旗, 等. 葡萄糖对三角褐指藻生长、岩藻黄素含量及相关基因表达的影响[J]. 中国药学杂志, 2016, 51(14): 1230-1234.
    [19]
    DE JESÚS-CAMPOS D, LÓPEZ-ELÍAS J A, MEDINA-JUAREZ L Á, et al. Chemical composition, fatty acid profile and molecular changes derived from nitrogen stress in the diatom Chaetoceros muelleri[J]. Aquaculture Reports, 2020, 16: 100281. doi: 10.1016/j.aqrep.2020.100281
    [20]
    姚敬元. 溢油对微藻脂肪酸稳定同位素组成的影响[D]. 大连: 大连海事大学, 2017.
    [21]
    吴华莲, 苏娇娇, 向文洲, 等. 碳酸氢钠、氯化钠和pH对菱形藻EPA累积的影响[J]. 渔业现代化, 2014, 41(3): 5-10. doi: 10.3969/j.issn.1007-9580.2014.03.002
    [22]
    JEGAN G, SRINIVASAN M, SENTHILKUMAR N S. Influence of different concentrations of sodium bicarbonate on growth rate and biochemical composition of micro algae[J]. Journal of Algal Biomass Utilization, 2013, 4(4): 81-87.
    [23]
    REGNAULT A, CHERVIN D, CHAMMAI A, et al. Lipid composition of Euglena gracilis in relation to carbon-nitrogen balance[J]. Phytochemistry, 1995, 40(3): 725-733. doi: 10.1016/0031-9422(95)00268-C
    [24]
    LIU J, HUANG J C, SUN Z, et al. Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic Chlorella zofingiensis: assessment of algal oils for biodiesel production[J]. Bioresource Technology, 2011, 102(1): 106-110. doi: 10.1016/j.biortech.2010.06.017
  • Related Articles

    [1]TIAN Li-na, YANG Jin-sheng, ZHOU You-lin, CAO Rui, ZHANG Meng, PAN Yu-ying. The primary study on antioxidase activities of Boleophthalmus pectinirostris exposed to crude oil in intertidal zone[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2022, 41(1): 135-141. DOI: 10.12111/j.mes.20200170
    [2]XU Yi-xiao, HE Xi-lin, ZHANG Teng, LIU Ren-yan, ZHAO Zhi-juan. Identification of strains of Chattonella spp. from the Beibu Gulf[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2021, 40(3): 352-360. DOI: 10.12111/j.mes.20200148
    [3]WEI Hai-feng, TIAN Shan-chuan, ZHAO Xiao-yi, LIU Chang-fa, ZHOU Ji-ti. Study on the bioaccumulation kinetics of three PAHs by Apostichopus japonicus[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2019, 38(5): 663-668. DOI: 10.12111/j.mes20190503
    [4]LIU Yu, ZHOU Song-bai, ZHAO Xin-da, FANG Zhi-qiang. Composition of common fatty acids in sea cucumber at different latitudes[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2019, 38(4): 503-507. DOI: 10.12111/j.mes20190403
    [5]WANG Fu-qiang, WU Ying, CUI Ying. The Comparison of different fatty acids extraction methods of marine organism: a case study of Penaeus monodon[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2019, 38(1): 100-105. DOI: 10.12111/j.mes20190116
    [6]QIAO Ling, ZHEN Yu, MI Tie-Zhu. Review of the brown tides caused by Aureococcus anophagefferens[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2016, 35(3): 473-480. DOI: 10.13634/j.cnki.mes20160324
    [7]LI Lei, JIANG Mei, SHEN Xin-qiang, WANG Yun-long, WU Qing-yuan, NIU Jun-xiang, XU Gao-peng. Effects of Cr(VI) on the activities of SOD,concentration of MDA and MTs inhepatopancreas and gilltsissue of Portunus trituberculatus[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2015, 34(6): 838-843. DOI: 10.13634/j.cnki.mes.2015.06.007
    [8]LIU Yu, LI Ying, WANG Xiao-qi, WANG Hai-xia, HAN Jun-song. Effect of crude oil dispersion on carbon and nitrogen stable isotopic composition of Nitzschia closterium[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2015, 34(4): 503-507. DOI: 10.13634/j.cnki.mes.2015.04.005
    [9]LIU Yu, YAO Jing-yuan, LI Ying, ZHANG Xu-feng. Effects of pretreatment methods on the extraction amount and the stable carbon isotopic composition of marine microalgae fatty acid[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2015, 34(3): 457-461. DOI: 10.13634/j.cnki.mes.2015.03.023
    [10]WANG Li-li, WANG Yi-nan, SONG Ying-ying, YAO Xiang, LI Yan. Influence of single and combined cadmium and benzo(a)-pyrene on SOD, CAT activities and MDA content in the Polychaete Perinereis aibuhitensis[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2015, 34(1): 17-22. DOI: 10.13634/j.cnki.mes.2015.01.004
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article Metrics

    Article views (5298) PDF downloads (25) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return