• 中文核心期刊
  • 中国科技核心期刊
  • CSCD
  • ISSN 1007-6336
  • CN 21-1168/X
HE Huize, ZHANG Jie, YU Miao, HUANG Lei, LI Heng, LIU Xiaohuan. Characteristics of atmospheric dry deposition of organic nitrogen over China Seas[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2025, 44(2): 312-320. DOI: 10.12111/j.mes.2024-x-0077
Citation: HE Huize, ZHANG Jie, YU Miao, HUANG Lei, LI Heng, LIU Xiaohuan. Characteristics of atmospheric dry deposition of organic nitrogen over China Seas[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2025, 44(2): 312-320. DOI: 10.12111/j.mes.2024-x-0077

Characteristics of atmospheric dry deposition of organic nitrogen over China Seas

More Information
  • Received Date: April 07, 2024
  • Revised Date: May 12, 2024
  • Accepted Date: May 26, 2024
  • Organic nitrogen is a crucial component of atmospheric nitrogen compounds, playing a significant role in the nitrogen cycle and marine ecosystems. This study utilized the third-generation air quality model WRF-CMAQ to estimate the dry deposition flux of atmospheric organic nitrogen over the China offshore regions during summer and winter in 2013 and 2017. We analyzed the spatiotemporal variations, quantified the impact of sea salt heterogeneous reactions on the deposition flux of atmospheric organic nitrogen to the ocean, and explored the changes in deposition flux characteristics during photochemical pollution events. The results indicate that the average dry deposition flux of atmospheric organic nitrogen over the China offshore regions in 2013 and 2017 ranged from 0.06 to 0.25 mg N/(m2·d). During summer, the deposition flux gradually decreased from north to south [Bohai Sea: 0.15 mg N/(m2·d), Yellow Sea: 0.09 mg N/(m2·d), East China Sea: 0.06 mg N/(m2·d)], while the opposite trend was observed during winter, with the highest flux in the East China Sea [0.22 mg N /(m2·d)/(m2·d)and the lowest in the Bohai Sea [0.05 mg N/(m2·d)]. From 2013 to 2017, the deposition flux of organic nitrogen increased in the Bohai Sea and the western coastal areas of the Yellow Sea (12%-17%), while decreasing in other areas (4% - 35%). During photochemical pollution events, the deposition flux of atmospheric organic nitrogen significantly increased (3.1-3.5 times). Sea salt surface heterogeneous reactions could enhance the deposition flux of organic nitrogen by 4.2-9.2 μg N/(m2·d)(10% - 40%) in certain regions, with a higher impact during winter than summer.

  • [1]
    SHOU W W, ZONG H B, DING P X, et al. A modelling approach to assess the effects of atmospheric nitrogen deposition on the marine ecosystem in the Bohai Sea, China[J]. Estuarine, Coastal and Shelf Science, 2018, 208: 36-48. doi: 10.1016/j.ecss.2018.04.025
    [2]
    LI Y M, FU T M, YU J Z, et al. Dissecting the contributions of organic nitrogen aerosols to global atmospheric nitrogen deposition and implications for ecosystems[J]. National Science Review, 2023, 10(12): nwad244. doi: 10.1093/nsr/nwad244
    [3]
    CAPE J N, CORNELL S E, JICKELLS T D, et al. Organic nitrogen in the atmosphere: where does it come from? A review of sources and methods[J]. Atmospheric Research, 2011, 102(1/2): 30-48.
    [4]
    NAKAMURA T, OGAWA H, MARIPI D, et al. Contribution of water soluble organic nitrogen to total nitrogen in marine aerosols over the East China Sea and western North Pacific[J]. Atmospheric Environment, 2006, 40(37): 7259-7264. doi: 10.1016/j.atmosenv.2006.06.026
    [5]
    ZHANG X S, CHEN S Q, HAN X R, et al. Effects of organic nitrogen components from terrestrial input on the phytoplankton community in Jiaozhou Bay[J]. Marine Pollution Bulletin, 2022, 174: 113316. doi: 10.1016/j.marpolbul.2021.113316
    [6]
    IM U, CHRISTODOULAKI S, VIOLAKI K, et al. Atmospheric deposition of nitrogen and sulfur over southern Europe with focus on the Mediterranean and the Black Sea[J]. Atmospheric Environment, 2013, 81: 660-670. doi: 10.1016/j.atmosenv.2013.09.048
    [7]
    SRINIVAS B, SARIN M M, SARMA V V S S. Atmospheric dry deposition of inorganic and organic nitrogen to the Bay of Bengal: impact of continental outflow[J]. Marine Chemistry, 2011, 127(1/2/3/4): 170-179.
    [8]
    JUNG J, HAN B, RODRIGUEZ B, et al. Atmospheric dry deposition of water-soluble nitrogen to the subarctic western North Pacific Ocean during summer[J]. Atmosphere, 2019, 10(7): 351. doi: 10.3390/atmos10070351
    [9]
    QI J H, SHI J H, GAO H W, et al. Atmospheric dry and wet deposition of nitrogen species and its implication for primary productivity in coastal region of the Yellow Sea, China[J]. Atmospheric Environment, 2013, 81: 600-608. doi: 10.1016/j.atmosenv.2013.08.022
    [10]
    YAN X X, XU Y, PAN G N. Evolution of China's NOx emission control strategy during 2005~2020 over coal-fired power plants: a satellite-based assessment[J]. Journal of Environmental Management, 2023, 348: 119243. doi: 10.1016/j.jenvman.2023.119243
    [11]
    XU W Q, SUN Y L, WANG Q Q, et al. Seasonal characterization of organic nitrogen in atmospheric aerosols using high resolution aerosol mass spectrometry in Beijing, China[J]. ACS Earth and Space Chemistry, 2017, 1(10): 673-682. doi: 10.1021/acsearthspacechem.7b00106
    [12]
    CHEN G J, JI X T, CHEN J S, et al. Photochemical pollution during summertime in a coastal city of Southeast China: ozone formation and influencing factors[J]. Atmospheric Research, 2024, 301: 107270. doi: 10.1016/j.atmosres.2024.107270
    [13]
    QIU Y L, MA Z Q, LI K, et al. Measurement report: fast photochemical production of peroxyacetyl nitrate (PAN) over the rural North China Plain during cold-season haze events[J]. Atmospheric Chemistry and Physics: Discussions 2021, 21(23): 17995–18010.
    [14]
    邹 宇, 邓雪娇, 李 菲, 等. 广州番禺大气成分站一次典型光化学污染过程PAN和O3分析[J]. 环境科学, 2019, 40(4): 1634-1644.
    [15]
    SARWAR G, SIMON H, XING J, et al. Importance of tropospheric ClNO2 chemistry across the Northern Hemisphere[J]. Geophysical Research Letters, 2014, 41(11): 4050-4058. doi: 10.1002/2014GL059962
    [16]
    LI Q Y, ZHANG L, WANG T, et al. Impacts of heterogeneous uptake of dinitrogen pentoxide and chlorine activation on ozone and reactive nitrogen partitioning: improvement and application of the WRF-Chem model in southern China[J]. Atmospheric Chemistry and Physics, 2016, 16(23): 14875-14890. doi: 10.5194/acp-16-14875-2016
    [17]
    肖春艳, 李朋波, 胡情情, 等. 丹江口水库淅川库区大气水溶性有机氮干沉降特征及源解析[J]. 环境科学学报, 2023, 43(9): 268-278.
    [18]
    张佳颖, 于兴娜, 张毓秀, 等. 南京北郊大气降水中水溶性无机氮和有机氮沉降特征[J]. 环境科学, 2022, 43(7): 3416-3422.
    [19]
    HAN X, ZHANG M G, SKOROKHOD A, et al. Modeling dry deposition of reactive nitrogen in China with RAMS-CMAQ[J]. Atmospheric Environment, 2017, 166: 47-61. doi: 10.1016/j.atmosenv.2017.07.015
    [20]
    黄 蕾, 薛 迪, 王 娇, 等. 海盐非均相反应对山东沿海大气O3浓度的影响[J]. 中国环境科学, 2021, 41(11): 5036-5045. doi: 10.3969/j.issn.1000-6923.2021.11.009
    [21]
    BERTRAM T H, THORNTON J A. Toward a general parameterization of N2O5 reactivity on aqueous particles: the competing effects of particle liquid water, nitrate and chloride[J]. Atmospheric Chemistry and Physics, 2009, 9(21): 8351-8363. doi: 10.5194/acp-9-8351-2009
    [22]
    DE HAAN D O, FINLAYSON-PITTS B J. Knudsen cell studies of the reaction of gaseous nitric acid with synthetic sea salt at 298 K[J]. The Journal of Physical Chemistry A, 1997, 101(51): 9993-9999. doi: 10.1021/jp972450s
    [23]
    ABBATT J P D, WASCHEWSKY G C G. Heterogeneous interactions of HOBr, HNO3, O3, and NO2 with deliquescent NaCl aerosols at room temperature[J]. The Journal of Physical Chemistry A, 1998, 102(21): 3719-3725. doi: 10.1021/jp980932d
    [24]
    CHEN J, FU X, WANG X F, et al. Unveiling the overlooked direct emissions of particulate organic nitrates from ship[J]. Environment International, 2024, 185: 108487. doi: 10.1016/j.envint.2024.108487
    [25]
    GE D F, NIE W, SUN P, et al. Characterization of particulate organic nitrates in the Yangtze River Delta, East China, using the time-of-flight aerosol chemical speciation monitor[J]. Atmospheric Environment, 2022, 272: 118927. doi: 10.1016/j.atmosenv.2021.118927
    [26]
    陈 晶. 泰山站点颗粒态有机硝酸酯的污染特征与影响因素[D]. 济南: 山东大学, 2022.
    [27]
    李 伟. 珠三角城区颗粒物中有机硝酸酯的来源及大气过程初探[D]. 广州: 暨南大学, 2022.
    [28]
    XU W Q, TAKEUCHI M, CHEN C, et al. Estimation of particulate organic nitrates from thermodenuder–aerosol mass spectrometer measurements in the North China Plain[J]. Atmospheric Measurement Techniques, 2021, 14(5): 3693-3705. doi: 10.5194/amt-14-3693-2021
    [29]
    李 锐. 济南市区大气颗粒物中有机硝酸酯的测定与污染特征分析[D]. 济南: 山东大学, 2018.
    [30]
    ZHANG G, JING S A, XU W Y, et al. Simultaneous observation of atmospheric peroxyacetyl nitrate and ozone in the megacity of Shanghai, China: regional transport and thermal decomposition[J]. Environmental Pollution, 2021, 274: 116570. doi: 10.1016/j.envpol.2021.116570
    [31]
    刘玉虹. 青岛沿海大气光化学污染特征与形成机理研究[D]. 济南: 山东大学, 2021.
    [32]
    HU B Y, LIU T T, HONG Y W, et al. Characteristics of peroxyacetyl nitrate (PAN) in a coastal city of southeastern China: photochemical mechanism and pollution process[J]. Science of the Total Environment, 2020, 719: 137493. doi: 10.1016/j.scitotenv.2020.137493
    [33]
    杨 乐, 沈建东, 许凯儿, 等. 杭州市大气中光化学污染物PAN污染特征研究[J]. 广东化工, 2016, 43(11): 187-188,182. doi: 10.3969/j.issn.1007-1865.2016.11.095
    [34]
    USEPA. Guidance on the use of models and other analyses for demonstrating attainment of air quality goals for ozone, PM2.5, and regional haze[R]. Research Triangle Park: U. S. Environmental Protection Agency, 2007.
    [35]
    张立杰, 张 丽, 李 磊, 等. 深圳大运会期间一次光化学污染事件成因分析[J]. 环境监控与预警, 2013, 5(2): 10-14. doi: 10.3969/j.issn.1674-6732.2013.02.003
    [36]
    环境保护部, 国家质量监督检验检疫总局. 环境空气质量标准: GB 3095-2012[S]. 北京: 中国环境科学出版社, 2016.
    [37]
    CORNELL S, RANDELL A, JICKELLS T. Atmospheric inputs of dissolved organic nitrogen to the oceans[J]. Nature, 1995, 376(6537): 243-246. doi: 10.1038/376243a0
    [38]
    LIU L, WANG X F, CHEN J M, et al. Understanding unusually high levels of peroxyacetyl nitrate (PAN) in winter in Urban Jinan, China[J]. Journal of Environmental Sciences, 2018, 71: 249-260. doi: 10.1016/j.jes.2018.05.015
  • Related Articles

    [1]JIN Fei, WANG Ying, CONG Yi, ZHANG Mingxing, LI Zhaochuan, LOU Yadi, YAO Ziwei, WANG Juying. Research on environmental priority pollutants in seawater of China by COMMPS and DYNAMEC methods[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2023, 42(6): 892-900. DOI: 10.12111/j.mes.2023-x-0094
    [2]ZHANG Xue-wei, HAN Zhen. Prediction and analysis of Argo temperature data by ConvGRU model[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2022, 41(4): 628-635. DOI: 10.12111/j.mes.20210054
    [3]TIAN Li-na, YANG Jin-sheng, ZHOU You-lin, CAO Rui, ZHANG Meng, PAN Yu-ying. The primary study on antioxidase activities of Boleophthalmus pectinirostris exposed to crude oil in intertidal zone[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2022, 41(1): 135-141. DOI: 10.12111/j.mes.20200170
    [4]YU Cai-fen, XU Dao-yan, XING Qing-hui, SHANGGUAN Kui-xing, LIU Chang-an, LIAO Guo-xiang, ZHANG Yue. Discussion on prevention and control of invasive Spartina alterniflora in Bohai rim region[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2021, 40(6): 903-907. DOI: 10.12111/j.mes.2021-x-0109
    [5]WEI Hai-feng, TIAN Shan-chuan, ZHAO Xiao-yi, LIU Chang-fa, ZHOU Ji-ti. Study on the bioaccumulation kinetics of three PAHs by Apostichopus japonicus[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2019, 38(5): 663-668. DOI: 10.12111/j.mes20190503
    [6]ZHANG Xin-xin, YIN Yue, DUAN Mei-na, WANG Chao, XIONG De-qi. Effect of bioremediation dispersant and 180# fuel oil on CAT and SOD in Glyptocidaris crenularis[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2017, 36(2): 284-290. DOI: 10.13634/j.cnki.mes20170220
    [7]JING Xiao-li, MI Tie-zhu, ZHEN Yu, FU Bao-zhong, LI Cheng-feng, YU Zhi-gang. Description of nitrogen metabolism pathway based on Skeletonema marinoi transcriptome[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2016, 35(5): 703-711. DOI: 10.13634/j.cnki.mes20160511
    [8]QIAO Ling, ZHEN Yu, MI Tie-Zhu. Review of the brown tides caused by Aureococcus anophagefferens[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2016, 35(3): 473-480. DOI: 10.13634/j.cnki.mes20160324
    [9]LI Lei, JIANG Mei, SHEN Xin-qiang, WANG Yun-long, WU Qing-yuan, NIU Jun-xiang, XU Gao-peng. Effects of Cr(VI) on the activities of SOD,concentration of MDA and MTs inhepatopancreas and gilltsissue of Portunus trituberculatus[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2015, 34(6): 838-843. DOI: 10.13634/j.cnki.mes.2015.06.007
    [10]LI Lei, JIANG Mei, SHEN Xin-qiang, WANG Yun-long, WU Qing-yuan, NIU Jun-xiang, XU Gao-peng. Effects of benzo[a]pyrene exposure on biomarkers in Exopalaemon carinicauda liver[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2015, 34(4): 513-518. DOI: 10.13634/j.cnki.mes.2015.04.007

Catalog

    Article Metrics

    Article views (31) PDF downloads (12) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return